首页> 外文OA文献 >Distributional learning of parallel multiple context-free grammars
【2h】

Distributional learning of parallel multiple context-free grammars

机译:并行的分布学习并行多种无背景语法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Natural languages require grammars beyond context-free for their description. Here we extend a family of distributional learning algorithms for context-free grammars to the class of Parallel Multiple Context-Free Grammars (pmcfgs). These grammars have two additional operations beyond the simple context-free operation of concatenation: the ability to interleave strings of symbols, and the ability to copy or duplicate strings. This allows the grammars to generate some non-semilinear languages, which are outside the class of mildly context-sensitive grammars. These grammars, if augmented with a suitable feature mechanism, are capable of representing all of the syntactic phenomena that have been claimed to exist in natural language.We present a learning algorithm for a large subclass of these grammars, that includes all regular languages but not all context-free languages. This algorithm relies on a generalisation of the notion of distribution as a function from tuples of strings to entire sentences; we define nonterminals using finite sets of these functions. Our learning algorithm uses a nonprobabilistic learning paradigm which allows for membership queries as well as positive samples; it runs in polynomial time.
机译:自然语言需要超越背景的语法,以便他们的描述。在这里,我们将一系列分配学习算法延伸到无与伦比的语法到平行多个无背景语法(PMCFG)的类别。这些语法具有两个额外的操作,超出了替代的简单无背景操作:交错符号字符串的能力以及复制或重复字符串的能力。这允许语法生成一些非半线性语言,这些语言不在轻度上下文敏感的语法之外。如果使用合适的特征机制增强这些语法,则能够代表已声称以自然语言存在的所有句法现象。我们为这些语法的大型子类提供了一种学习算法,包括所有常规语言但不是所有无背景语言。该算法依赖于分布概念的概念作为从字符串的元组到整个句子的函数;我们使用这些功能的有限组定义非终端。我们的学习算法使用非物质学习范例,允许会员查询以及正样品;它在多项式时间内运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号