首页> 外文期刊>Machine Learning >Enhancing understanding and improving prediction of severe weather through spatiotemporal relational learning
【24h】

Enhancing understanding and improving prediction of severe weather through spatiotemporal relational learning

机译:通过时空关系学习增强对恶劣天气的认识并改善对恶劣天气的预测

获取原文
获取原文并翻译 | 示例

摘要

Severe weather, including tornadoes, thunderstorms, wind, and hail annually cause significant loss of life and property. We are developing spatiotemporal machine learning techniques that will enable meteorologists to improve the prediction of these events by improving their understanding of the fundamental causes of the phenomena and by building skillful empirical predictive models. In this paper, we present significant enhancements of our Spatiotemporal Relational Probability Trees that enable autonomous discovery of spatiotemporal relationships as well as learning with arbitrary shapes. We focus our evaluation on two real-world case studies using our technique: predicting tornadoes in Oklahoma and predicting aircraft turbulence in the United States. We also discuss how to evaluate success for a machine learning algorithm in the severe weather domain, which will enable new methods such as ours to transfer from research to operations, provide a set of lessons learned for embedded machine learning applications, and discuss how to field our technique.
机译:包括龙卷风,雷暴,大风和冰雹在内的恶劣天气每年都会造成严重的生命和财产损失。我们正在开发时空机器学习技术,这将使气象学家能够通过增强对现象的根本原因的理解并建立熟练的经验预测模型来改善对这些事件的预测。在本文中,我们提出了时空关系概率树的显着增强,这些树使得能够自动发现时空关系以及学习任意形状。我们使用我们的技术将评估的重点放在两个实际案例研究上:预测俄克拉荷马州的龙卷风和预测美国的飞机湍流。我们还将讨论如何评估恶劣天气范围内机器学习算法的成功,这将使诸如我们这样的新方法能够从研究转移到运营,为嵌入式机器学习应用程序提供一系列经验教训,并讨论如何进行实地研究。我们的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号