首页> 外文期刊>Big Data, IEEE Transactions on >Relational Learning Improves Prediction of Mortality in COVID-19 in the Intensive Care Unit
【24h】

Relational Learning Improves Prediction of Mortality in COVID-19 in the Intensive Care Unit

机译:关系学习改善了重症监护室Covid-19中死亡率的预测

获取原文
获取原文并翻译 | 示例

摘要

Traditional Machine Learning (ML) models have had limited success in predicting Coronoavirus-19 (COVID-19) outcomes using Electronic Health Record (EHR) data partially due to not effectively capturing the inter-connectivity patterns between various data modalities. In this work, we propose a novel framework that utilizes relational learning based on a heterogeneous graph model (HGM) for predicting mortality at different time windows in COVID-19 patients within the intensive care unit (ICU). We utilize the EHRs of one of the largest and most diverse patient populations across five hospitals in major health system in New York City. In our model, we use an LSTM for processing time varying patient data and apply our proposed relational learning strategy in the final output layer along with other static features. Here, we replace the traditional softmax layer with a Skip-Gram relational learning strategy to compare the similarity between a patient and outcome embedding representation. We demonstrate that the construction of a HGM can robustly learn the patterns classifying patient representations of outcomes through leveraging patterns within the embeddings of similar patients. Our experimental results show that our relational learning-based HGM model achieves higher area under the receiver operating characteristic curve (auROC) than both comparator models in all prediction time windows, with dramatic improvements to recall.
机译:传统的机器学习(ML)模型在预测Coronoavirus-19(Covid-19)的成果中,使用电子健康记录(EHR)数据部分地取得了有限的成功,因为没有有效地捕获各种数据模式之间的连接间模式。在这项工作中,我们提出了一种新的框架,该框架利用基于异质图模型(HGM)的关系学习,用于预测Covid-19患者在重症监护单元(ICU)中的不同时间窗口的死亡率。我们利用纽约主要卫生系统的五家医院中最大和最多样化的患者群体中的一个最大和最多样化的患者群体。在我们的模型中,我们使用LSTM来处理时间变化的患者数据,并在最终输出层中应用我们提出的关系学习策略以及其他静态功能。在这里,我们用Skip-Gram关系学习策略替换传统的Softmax层,以比较患者和结果嵌入表示之间的相似性。我们证明HGM的构建可以鲁布布地学习通过在类似患者的嵌入内的杠杆化模式来分类结果的患者表示。我们的实验结果表明,基于关系基于学习的HGM模型在接收器操作特性曲线(AUROC)下实现了比所有预测时间窗口的比较器模型更高的区域,召回的戏剧性改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号