首页> 外文期刊>Machine Learning >Learning hierarchical probabilistic logic programs
【24h】

Learning hierarchical probabilistic logic programs

机译:学习分层概率逻辑程序

获取原文

摘要

Probabilistic logic programming (PLP) combines logic programs and probabilities. Due to its expressiveness and simplicity, it has been considered as a powerful tool for learning and reasoning in relational domains characterized by uncertainty. Still, learning the parameter and the structure of general PLP is computationally expensive due to the inference cost. We have recently proposed a restriction of the general PLP language called hierarchical PLP (HPLP) in which clauses and predicates are hierarchically organized. HPLPs can be converted into arithmetic circuits or deep neural networks and inference is much cheaper than for general PLP. In this paper we present algorithms for learning both the parameters and the structure of HPLPs from data. We first present an algorithm, called parameter learning for hierarchical probabilistic logic programs (PHIL) which performs parameter estimation of HPLPs using gradient descent and expectation maximization. We also propose structure learning of hierarchical probabilistic logic programming (SLEAHP), that learns both the structure and the parameters of HPLPs from data. Experiments were performed comparing PHIL and SLEAHP with PLP and Markov Logic Networks state-of-the art systems for parameter and structure learning respectively. PHIL was compared with EMBLEM, ProbLog2 and Tuffy and SLEAHP with SLIPCOVER, PROBFOIL+, MLB-BC, MLN-BT and RDN-B. The experiments on five well known datasets show that our algorithms achieve similar and often better accuracies but in a shorter time.
机译:概率逻辑编程(PLP)结合了逻辑程序和概率。由于其表现力和简单性,它被认为是用于学习和推理的强大工具,其特征在于不确定性。仍然,学习参数和通用PLP的结构由于推理成本而计算地昂贵。我们最近提出了限制称为分层PLP(HPLP)的一般PLP语言(HPLP),其中条款和谓词是分层组织的。 HPLPS可以转换成算术电路或深神经网络,推理比一般PLP更便宜。在本文中,我们提供了从数据学习参数和HPLPS结构的算法。我们首先介绍一种算法,称为分层概率逻辑程序(PHIL)的参数学习,其使用梯度下降和期望最大化执行HPLP的参数估计。我们还提出了分层概率逻辑编程(SLEAHP)的结构学习,其学习来自数据的HPLPS的结构和参数。对PLP和马尔可夫逻辑网络的菲尔和SLEAHP进行了比较了对参数和结构学习的菲尔和马斯科的实验。菲尔与带有普拉克,探针+,MLB-BC,MLN-BT和RDN-B的标志,职业专业,工业博物馆和凝灰岩和SLEAHP进行比较。五个众所周知的数据集上的实验表明,我们的算法达到了类似且经常更好的准确性,但在较短的时间内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号