首页> 外文学位 >Learning hierarchical decomposition rules for planning: An inductive logic programming approach.
【24h】

Learning hierarchical decomposition rules for planning: An inductive logic programming approach.

机译:学习计划的层次分解规则:归纳逻辑编程方法。

获取原文
获取原文并翻译 | 示例

摘要

Artificial Intelligence (AI) planning techniques have been central to automating a gamut of tasks from the mundane route planning and beer production to the ethereal image processing of space-ship images. Of all the planning techniques, hierarchical-decomposition planning has been the technique most employed in industrial-strength planners. Hierarchical-decomposition planning is performed by recursively decomposing a planning task into its subtasks, until the decomposition results in primitive tasks which can be directly achieved by executing the primitive actions.;Hierarchical-decomposition planning is knowledge intensive; it exploits knowledge of the structure and the constraints of a planning domain, to decompose a task into subtasks. Because dependence on human experts for this knowledge leads to knowledge-acquisition bottleneck, machine learning of this domain-specific knowledge becomes important. There exist two opportunities for learning in the context of hierarchical-decomposition planning. One is to learn how a planning task decomposes into subtasks. The other is to learn control knowledge to choose among various decompositions for a task depending upon situations. In this dissertation, the focus is on the former; more specifically, we focus on learning rules for task or goal decompositions.;Goal-decomposition rules (d-rules) decompose goals into a sequence of subgoals under certain conditions. These are a special case of hierarchical task networks (HTNs). The methodology we used for learning d-rules is to map d-rules to Horn clauses, and, thus, transform the problem of learning d-rules to learning Horn clauses. We developed probably correct algorithms for learning Horn clauses. Our algorithms are based on a "generalize-and-test" method, where inductive least-general generalization of positive examples is followed by pruning of irrelevant literals by asking queries or performing self-testing. We implemented systems that are founded in the theoretical algorithms, and tested the applicability of the systems in two planning domains--a robot navigation domain and an air-traffic control domain. One of these systems, ExEL, learned from solved problems and expert-answered queries. The other, LeXer, learned from unsolved but ordered problems, or exercises, and self-testing. The applicability of the theoretical algorithms developed for learning Horn clauses, however, transcends the learning of d-rules and even the learning of the more general HTNs.
机译:人工智能(AI)计划技术一直是自动完成从平凡的路线计划和啤酒生产到太空飞船图像的空灵图像处理的全部任务的核心。在所有计划技术中,分层分解计划已成为工业强度计划者中最常用的技术。递归分解计划是通过将计划任务递归分解为子任务来执行的,直到分解产生可以通过执行原始动作直接实现的原始任务为止。递归分解计划是知识密集型的;它利用对计划域的结构和约束的了解,将任务分解为子任务。由于依赖人类专家获取此知识会导致知识获取瓶颈,因此,针对特定领域知识的机器学习变得非常重要。在分层分解计划的上下文中,有两个学习的机会。一种是学习计划任务如何分解为子任务。另一种是学习控制知识,以根据情况在任务的各种分解中进行选择。本文的重点是前者。更具体地讲,我们专注于任务或目标分解的学习规则。目标分解规则(d规则)在特定条件下将目标分解为一系列子目标。这些是分层任务网络(HTN)的特例。我们用于学习d规则的方法是将d规则映射到Horn子句,从而将学习d规则的问题转换为学习Horn子句。我们开发了可能正确的算法来学习Horn子句。我们的算法基于“一般化测试”方法,其中对正面示例进行归纳式最小化一般化之后,通过询问查询或执行自检来修剪不相关的文字。我们实施了以理论算法为基础的系统,并在两个规划领域(机器人导航领域和空中交通管制领域)中测试了该系统的适用性。这些系统之一,ExEL,是从已解决的问题和专家回答的查询中学到的。另一个是LeXer,他们从尚未解决但有序的问题,练习或自我测试中学到了东西。但是,为学习Horn条款而开发的理论算法的适用性超越了d规则的学习甚至超越了更一般的HTN的学习。

著录项

  • 作者

    Reddy, Chandrasekhara K.;

  • 作者单位

    Oregon State University.;

  • 授予单位 Oregon State University.;
  • 学科 Artificial Intelligence.;Computer Science.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:48:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号