首页> 美国卫生研究院文献>Protein Engineering Design and Selection >Discovering Rules for Protein-Ligand specificity using Support Vector Inductive Logic Programming
【2h】

Discovering Rules for Protein-Ligand specificity using Support Vector Inductive Logic Programming

机译:使用支持向量归纳逻辑编程发现蛋白质配体特异性的规则

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Structural genomics initiatives are rapidly generating vast numbers of protein structures. Comparative modelling is also capable of producing accurate structural models for many protein sequences. However, for many of the known structures, functions are not yet determined, and in many modelling tasks an accurate structural model does not necessarily tell us about function. Thus there is a pressing need for high-throughput methods for determining function from structure. The spatial arrangement of key amino acids in a folded protein, on the surface or buried in clefts, are often the determinants of its biological function. A central aim of molecular biology is to understand the relationship between such substructures or surfaces and biological function, leading both to function prediction and function design. We present a new general method for discovering the features of binding pockets that confer specificity for particular ligands. Using a recently developed machine-learning technique which couples the rule-discovery approach of Inductive Logic Programming with the statistical learning power of Support Vector Machines, we are able to discriminate, with high precision (90%) and recall (86%) between pockets that bind FAD and those that bind NAD on a large benchmark set given only the geometry and composition of the backbone of the binding pocket without the use of docking. In addition we learn rules governing this specificity which can feed into protein functional design protocols. An analysis of the rules found suggest that key features of the binding pocket may be tied to conformational freedom in the ligand. The representation is sufficiently general to be applicable to any discriminatory binding problem. All programs and datasets are freely available to non-commercial users at .
机译:结构基因组学计划正在迅速产生大量的蛋白质结构。比较建模还能够为许多蛋白质序列生成准确的结构模型。但是,对于许多已知的结构,功能尚未确定,在许多建模任务中,准确的结构模型不一定能告诉我们有关功能的信息。因此,迫切需要用于从结构确定功能的高通量方法。折叠蛋白质的主要氨基酸在表面上或埋在裂缝中的空间排列通常是其生物学功能的决定因素。分子生物学的主要目标是了解此类亚结构或表面与生物学功能之间的关系,从而实现功能预测和功能设计。我们提出了一种发现赋予特定配体特异性的结合口袋特征的新通用方法。使用最新开发的机器学习技术,将归纳逻辑编程的规则发现方法与支持向量机的统计学习能力相结合,我们能够以不同的精度(90%)和召回率(86%)来区分仅在不使用对接的情况下,在给定绑定袋主干的几何结构和组成的情况下,在大型基准集上绑定FAD和绑定NAD的对象。另外,我们学习了控制这种特异性的规则,可以将其引入蛋白质功能设计方案中。对发现的规则的分析表明,结合口袋的关键特征可能与配体的构象自由度有关。该表示具有足够的通用性,可应用于任何歧视性约束问题。所有程序和数据集均可通过访问免费提供给非商业用户。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号