首页> 外文期刊>Lifetime Data Analysis >Quantile regression-based Bayesian joint modeling analysis of longitudinal-survival data, with application to an AIDS cohort study
【24h】

Quantile regression-based Bayesian joint modeling analysis of longitudinal-survival data, with application to an AIDS cohort study

机译:基于分数的回归的贝叶斯联合建模分析纵向存活数据,应用于艾滋病队列研究

获取原文
获取原文并翻译 | 示例

摘要

In longitudinal studies, it is of interest to investigate how repeatedly measured markers are associated with time to an event. Joint models have received increasing attention on analyzing such complex longitudinal-survival data with multiple data features, but most of them are mean regression-based models. This paper formulates a quantile regression (QR) based joint models in general forms that consider left-censoring due to the limit of detection, covariates with measurement errors and skewness. The joint models consist of three components: (ⅰ) QR-based nonlinear mixed-effects Tobit model using asymmetric Laplace distribution for response dynamic process; (ⅱ) non-parametric linear mixed-effects model with skew-normal distribution for mismeasured covariate; and (ⅲ) Cox proportional hazard model for event time. For the purpose of simultaneously estimating model parameters, we propose a Bayesian method to jointly model the three components which are linked through the random effects. We apply the proposed modeling procedure to analyze the Multicenter AIDS Cohort Study data, and assess the performance of the proposed models and method through simulation studies. The findings suggest that our QR-based joint models may provide comprehensive understanding of heterogeneous outcome trajectories at different quantiles, and more reliable and robust results if the data exhibits these features.
机译:在纵向研究中,调查多次测量标记与事件的时间相关的感兴趣。联合模型已经收到了随着多种数据特征分析如此复杂的纵向生存数据,但大多数是基于回归的模型。本文以一般形式制定了基于量的回归(QR)的联合模型,其考虑由于检测限,协调因子具有测量误差和偏斜的变性。联合模型包括三个组件:(Ⅰ)基于QR的非线性混合效应对响应动态过程的不对称拉普拉斯分布的QR基非线性混合效应TOBIT模型; (Ⅱ)非参数性线性混合效应模型,具有偏离协变量的偏置正态分布; (Ⅲ)事件时间的Cox比例危险模型。为了同时估计模型参数,我们提出了一种贝叶斯方法,共同模拟通过随机效应链接的三个组件。我们应用建议的建模程序来分析多中心辅助队员研究数据,并通过模拟研究评估所提出的模型和方法的性能。调查结果表明,基于QR的联合模型可以全面了解不同量级的异构结果轨迹,如果数据表现出这些特征,则更可靠和更稳健的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号