首页> 外文期刊>Lifetime Data Analysis >Adjusting for time-varying confounding in the subdistribution analysis of a competing risk
【24h】

Adjusting for time-varying confounding in the subdistribution analysis of a competing risk

机译:调整竞争风险的子分布分析中的时变混杂

获取原文
获取原文并翻译 | 示例

摘要

Despite decades of research in the medical literature, assessment of the attributable mortality due to nosocomial infections in the intensive care unit (ICU) remains controversial, with different studies describing effect estimates ranging from being neutral to extremely risk increasing. Interpretation of study results is further hindered by inappropriate adjustment (a) for censoring of the survival time by discharge from the ICU, and (b) for time-dependent confounders on the causal path from infection to mortality. In previous work (Vansteelandt et al. Biostatistics 10:46-59), we have accommodated this through inverse probability of treatment and censoring weighting. Because censoring due to discharge from the ICU is so intimately connected with a patient's health condition, the ensuing inverse weighting analyses suffer from influential weights and rely heavily on the assumption that one has measured all common risk factors of ICU discharge and mortality. In this paper, we consider ICU discharge as a competing risk in the sense that we aim to infer the risk of 'ICU mortality' over time that would be observed if nosocomial infections could be prevented for the entire study population. For this purpose we develop marginal structural subdistribution hazard models with accompanying estimation methods. In contrast to subdistribution hazard models with time-varying covariates, the proposed approach (a) can accommodate high-dimensional confounders, (b) avoids regression adjustment for post-infection measurements and thereby so-called collider-stratification bias, and (c) results in a well-defined model for the cumulative incidence function. The methods are used to quantify the causal effect of nosocomial pneumonia on ICU mortalityrnusing data from the National Surveillance Study of Nosocomial Infections in ICU's (Belgium).
机译:尽管在医学文献中进行了数十年的研究,但对重症监护病房(ICU)医院感染引起的归因死亡率的评估仍存在争议,不同的研究描述了从中性到极度危险性增加的影响估计。不适当的调整(a)审查从ICU出院的存活时间,以及(b)时间依赖性混杂因素(从感染到死亡的因果关系),进一步阻碍了对研究结果的解释。在以前的工作中(Vansteelandt等人,Biostatistics 10:46-59),我们通过处理的逆概率和审查权重来适应这种情况。由于从ICU排出引起的检查与患者的健康状况密切相关,因此随后的权重分析受到影响力的影响,并严重依赖一种假设,即人们已经测量了ICU排出和死亡的所有常见风险因素。在本文中,从旨在推断随时间推移“ ICU死亡”的风险的意义上来说,我们将ICU排放视为竞争风险,如果可以为整个研究人群预防院内感染,则可以观察到。为此,我们使用附带的估算方法开发了边际结构子分布危害模型。与具有时变协变量的子分布危害模型相比,建议的方法(a)可以容纳高维混杂因素,(b)避免对感染后测量进行回归调整,从而避免所谓的对撞机分层偏差,以及(c)得出一个定义明确的累积入射函数模型。这些方法用于量化来自比利时ICU医院感染国家监测研究的数据对医院内肺炎对ICU死亡率的因果关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号