首页> 外文期刊>Knowledge-Based Systems >gMatch: Knowledge base question answering via semantic matching
【24h】

gMatch: Knowledge base question answering via semantic matching

机译:Gmatch:通过语义匹配回答知识库问题

获取原文
获取原文并翻译 | 示例

摘要

Effectiveness is essential for knowledge base question answering (KBQA) to determine whether the query can return the correct answers. Existing works for KBQA mainly focus on converting input questions into corresponding logic formats, such as SPARQL queries. However, since these works are largely decoupled from the knowledge base, the converted query may be ineffective. In this paper, we propose a novel semantic matching-based approach to model the query intention of the input question by extracting the subgraph of the knowledge base. The generation of the SPARQL query is reduced to semantic matching in the knowledge base to solve the ineffectiveness of the query. Firstly, a semantic query graph is proposed to model the reliable query intention of the input question. The SPARQL query graph could be extracted by matching the semantic query graph in the knowledge base. Secondly, an embedding-based method is developed to represent different forms of questions and queries in a common space. It is easy to detect semantic loss between the question and the converted query with the common representation. Finally, a data-driven semantic completion technique is presented to reduce the semantic loss by expanding the incomplete SPARQL query in the knowledge base. The experiments evaluated on benchmark datasets show that the proposed approach significantly outperforms state-of-the-art methods in efficiency and effectiveness. (C) 2021 Published by Elsevier B.V.
机译:有效性对于知识库问题应答(KBQA)至关重要,以确定查询是否可以返回正确的答案。 KBQA的现有工作主要集中在将输入问题转换为相应的逻辑格式,例如SPARQL查询。但是,由于这些作品主要从知识库分离,因此转换后的查询可能无效。在本文中,我们提出了一种新颖的基于语义匹配的方法来通过提取知识库的子图来模拟输入问题的查询意图。 SPARQL查询的生成减少到知识库中的语义匹配,以解决查询的无效性。首先,提出了一个语义查询图以模拟输入问题的可靠查询意图。可以通过匹配知识库中的语义查询图来提取SPARQL查询图。其次,开发了一种基于嵌入的方法,以表示公共空间中的不同形式的问题和查询。通过公共表示,易于检测问题与转换查询之间的语义损失。最后,提出了一种数据驱动的语义完成技术,以通过在知识库中扩展不完整的SPARQL查询来降低语义损失。在基准数据集上评估的实验表明,该方法的方法显着优于最先进的方法,以效率和有效性。 (c)2021由elsevier b.v发布。

著录项

  • 来源
    《Knowledge-Based Systems》 |2021年第27期|107270.1-107270.9|共9页
  • 作者单位

    State Key Lab Commun Content Cognit Tianjin Peoples R China|Tianjin Univ Coll Intelligence & Comp Tianjin 300350 Peoples R China;

    State Key Lab Commun Content Cognit Tianjin Peoples R China|Tianjin Univ Coll Intelligence & Comp Tianjin 300350 Peoples R China;

    State Key Lab Commun Content Cognit Tianjin Peoples R China|Tianjin Univ Coll Intelligence & Comp Tianjin 300350 Peoples R China;

    State Key Lab Commun Content Cognit Tianjin Peoples R China;

    State Key Lab Commun Content Cognit Tianjin Peoples R China;

    Griffith Univ Sch Informat & Commun Technol Nathan Qld 4111 Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Question answering; RDF; SPARQL; KBQA; Semantic parsing;

    机译:问题回答;rdf;sparql;kbqa;语义解析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号