首页> 外文期刊>Knowledge-Based Systems >A surrogate-assisted multi-objective particle swarm optimization of expensive constrained combinatorial optimization problems
【24h】

A surrogate-assisted multi-objective particle swarm optimization of expensive constrained combinatorial optimization problems

机译:替代辅助的多目标粒子群优化昂贵的受限组合优化问题

获取原文
获取原文并翻译 | 示例

摘要

Surrogate-assisted evolutionary algorithms have been commonly used in extremely expensive optimization problems. However, many existing algorithms are only significantly used in continuous and unconstrained optimization problems despite the fact that plenty of real-world problems are constrained combinatorial optimization problems. Therefore, a random forest assisted adaptive multi-objective particle swarm optimization (RFMOPSO) algorithm is proposed in this paper to address this challenge. Firstly, the multi-objective particle swarm optimization (MOPSO) combines with random forest model to accelerate the overall search speed of the algorithm. Secondly, an adaptive stochastic ranking strategy is performed to balance better objectives and feasible solutions. Finally, a novel rule is developed to adaptively update the states of particles. In order to validate the proposed algorithm, it is tested by ten multi-objective knapsack benchmark problems whose discrete variables vary from 10 to 100. Experimental results demonstrate that the proposed algorithm is promising for optimizing the constrained combinatorial optimization problem.
机译:辅助辅助进化算法通常用于极其昂贵的优化问题。然而,尽管事实上,许多现有算法仅在连续和不受约束的优化问题中显着使用,但是很多真实世界问题受到约束的组合优化问题。因此,在本文中提出了一种随机森林辅助自适应多目标粒子群综合优化(RFMOPSO)算法以解决这一挑战。首先,多目标粒子群优化(MOPSO)与随机林模型相结合,以加速算法的整体搜索速度。其次,执行自适应随机排名策略以平衡更好的目标和可行解决方案。最后,开发了一种新规则以适自行更新粒子状态。为了验证所提出的算法,它由十个多目标背包基准问题测试,其离散变量在10到100之间变化。实验结果表明,所提出的算法是优化约束组合优化问题的承诺。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号