首页> 外文期刊>Knowledge-Based Systems >Robust and label efficient bi-filtering graph convolutional networks for node classification
【24h】

Robust and label efficient bi-filtering graph convolutional networks for node classification

机译:强大和标签高效双滤波图卷积网络,用于节点分类

获取原文
获取原文并翻译 | 示例

摘要

Due to their success at node classification, Graph Convolutional Networks (GCN) have raised a research upsurge of deep learning on graph-structured data. For the semi-supervised classification, graph convolution essentially acts as a low-pass filter on graph spectral domain. According to Graph Signal Processing theory, the low-pass filter in GCN is a finite impulse response (FIR) graph filter. However, compared with FIR graph filters, infinite impulse response (IIR) graph filters exhibit more powerful representation ability and flexibility. Intuitively, it is feasible to replace FIR filter in GCN with IIR graph filter to improve GCN. Therefore, inspired by the direct implementation of IIR graph filters, we propose a Bi-filtering Graph Convolutional Network (BGCN) which can be realized by simply cascading two sub filtering modules. Experimental results demonstrate that BGCN works well in node classification task and achieves comparable performance to GCN and its variants. The improvement of BGCN, however, is at the expense of a time-complexity increase. To simplify the proposed BGCN, we construct a Simple Bi-filtering Graph Convolution framework (SBGC) from the perspective of Graph Signal Processing. Furthermore, for the implementations of BGCN and SBGC, we design a novel low-pass graph filter to capture the low-frequency components that are beneficial to data representation for the task of node classification. Extensive experiments show that SBGC not only outperforms other baseline methods in performance, but also keeps a high level in computational efficiency. Moreover, it is particularly worth noting that both BGCN and SBGC are robust to feature noise and exhibit high label efficiency. (C) 2021 Published by Elsevier B.V.
机译:由于在节点分级他们的成功,图形卷积网络(GCN)都提出了深刻的学习对图形的结构化数据的研究热潮。为半监督分类,图表卷积基本上充当上图形频谱域中的低通滤波器。根据图形信号处理理论,在GCN低通滤波器是一个有限脉冲响应(FIR)滤波器图表。然而,利用FIR滤波器图表相比,无限脉冲响应(IIR)滤波器图表显示出更加强大的表现能力和灵活性。直观地,可行的是具有IIR滤波器图形更换FIR滤波器在GCN改善GCN。因此,通过直接执行的IIR滤波器图形的启发,我们提出一种可通过简单地级联两个子滤波模块来实现的Bi过滤格拉夫卷积网络(BGCN)。实验结果表明,BGCN效果很好节点分类任务并达到相当的性能GCN及其变种。 BGCN的改善,但是,是的时间复杂度的增加为代价。为了简化所提出​​BGCN,构造从图形信号处理的观点来看的简单双过滤格拉夫卷积框架(任上海宝钢集团公司)。此外,对于BGCN和任上海宝钢集团公司的实现方式中,我们设计了一种新的低通滤波器图表来捕获对数据表示有益的节点分类的任务的低频分量。大量的实验表明,任上海宝钢集团公司不仅优于业绩基准的其他方法,但也保持在计算效率较高水平。此外,特别值得指出的是BGCN和任上海宝钢集团公司都是鲁棒特征噪声和表现出高的标签效率。 (c)由elsevier b.v发布的2021年

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号