首页> 外文期刊>Expert systems with applications >Multi-label graph node classification with label attentive neighborhood convolution
【24h】

Multi-label graph node classification with label attentive neighborhood convolution

机译:多标签图节点分类与标签周度邻里卷积

获取原文
获取原文并翻译 | 示例

摘要

Learning with graph structured data is of great significance for many practical applications. A crucial and fundamental task in graph learning is node classification. In reality, graph nodes are often encoded with various attributes. In addition, the task is usually multi-labeled in nature. In this paper, we tackle the problem of multilabel graph node classification, by leveraging structure, attribute and label information simultaneously. Specifically, to obtain rational node feature representations, we propose an intuitive yet effective graph convolution module to aggregate local attribute information of a given node. Moreover, the homophily hypothesis motivates us to build a label attention module. By exploiting both input and output contextual representations, we utilize the additive attention mechanism and build a label-aware representation learning framework to measure the compatibility between pairs of node embeddings and label embeddings. The proposed novel neural networkbased, multi-label classification method has been verified by extensive experiments conducted on five publicavailable benchmark datasets, including both attributed and non-attributed networks. The results demonstrate the effectiveness of the proposed model with respect to micro-F1, macro-F1 and Hamming loss, comparing with several state-of-the-art methods, including two relational neighbor classifiers and several popular graph neural network models.
机译:使用图形结构化数据学习对于许多实际应用具有重要意义。图表学习中的一个至关重要和基本的任务是节点分类。实际上,图形节点通常由各种属性编码。此外,任务通常是多标记的。在本文中,我们通过同时利用结构,属性和标签信息来解决多标签图节点分类的问题。具体地,为了获得Rational节点特征表示,我们提出了一种直观但有效的图形卷积模块来聚合给定节点的本地属性信息。此外,同性恋假设激励我们构建标签注意模块。通过利用输入和输出上下文表示,我们利用了添加剂注意机制,并构建了标签感知表示学习框架,以测量节点嵌入和标签嵌入对的对之间的兼容性。通过在五个公共能力基准数据集上进行的大量实验,包括归因于五个PulityAvabilableD数据集,包括拟议的新型神经网络基础,多标签分类方法,包括归属于属性和非归属网络。结果证明了所提出的模型关于微F1,宏-F1和汉明损失的有效性,与若干最先进的方法相比,包括两个关系邻分类器和几个流行的图形神经网络模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号