首页> 外文期刊>Knowledge-Based Systems >Multiple adversarial networks for unsupervised domain adaptation
【24h】

Multiple adversarial networks for unsupervised domain adaptation

机译:用于无监督域适应的多个对抗网络

获取原文
获取原文并翻译 | 示例

摘要

Domain adaptation algorithm is a powerful tool for transferring the knowledge of source domain with sufficient annotations for target tasks. Recently, adversarial learning is embedded into deep networks to reduce domain shift between source and target domains for learning transferable features. Existing adversarial domain adaptation methods aim at reducing the source and target domain discrepancy ignoring the class discrepancy between source and target domains. This paper proposes a novel Multiple Adversarial Networks (MAN) for unsupervised domain adaptation. MAN utilizes a pair of classifiers to minimize inter-domain discrepancy and embeds a domain discriminator for each category for intra-class discrepancy. Furthermore, we extend our MAN as improved MAN (iMAN) by utilizing a feature norm term to regularize the task-specific features, which can improve model generalization and help for minimizing intra-class discrepancy. We conduct extensive experiments on two real world datasets Office-Home and ImageCLEF-DA, and experiment results show the effectiveness and superiority of our methods compared with several state-of-the-art unsupervised domain adaptation methods. (C) 2020 Elsevier B.V. All rights reserved.
机译:域适应算法是一种强大的工具,用于传输源域的知识,具有足够的目标任务的注释。最近,对抗性学习被嵌入到深网络中,以减少源极和目标域之间的域移位,以学习可转移的功能。现有的对抗域适应方法旨在减少源和目标域差异忽略源域和目标域之间的类别差异。本文提出了一种用于无监督域适应的新型多个对抗网络(人)。人利用一对分类器来最小化域间差异,并为每个类别嵌入帧内差异的域鉴别器。此外,我们通过利用特征标准术语来将我们的人作为改进的人(IMAN)将特定于任务特定功能进行了规范,这可以改善模型泛化和帮助最小化课堂差异。我们对两个真实世界数据集办公室和ImageClef-da进行了广泛的实验,实验结果表明了我们的方法的有效性和优越性,而我们的方法与多种最先进的无监督域适应方法相比。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号