首页> 外文期刊>Knowledge-Based Systems >The Structured Smooth Adjustment for Square-root Regularization: Theory, algorithm and applications
【24h】

The Structured Smooth Adjustment for Square-root Regularization: Theory, algorithm and applications

机译:方形正则化结构化平稳调整:理论,算法和应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel method called Structured Smooth Adjustment for Square-root Regularization (SSASR) is proposed to simultaneously select grouped variables and encourage piecewise smoothness within each group. This approach is based on square-root regularization with a joint l(2,1) norm regularizer that, like the group lasso, shrinks a group of coefficients to identically zero and, additionally, involves an additional IGTV regularizer to enforce certain structural constraints - instead of pure sparsity - on the coefficients. We show the SSASR estimator can achieve optimal estimation and prediction, which is adaptive to the unknown noise level, under some mild conditions on the design matrix. To implement, an efficient algorithm termed Scaled Dual Forward-backward Splitting is proposed with proved convergence. Furthermore, we carry out an experimental evaluation on both synthetic data and real data obtained from glioblastoma multiforme samples and gray images. (C) 2020 Elsevier B.V. All rights reserved.
机译:在本文中,提出了一种称为结构化平滑调整的新方法,用于同时选择分组变量,并鼓励每个组内的分段平滑度。这种方法基于方形正则正规化,具有联合L(2,1)规范器,如组套索,将一组系数缩小到相同为零,另外,涉及额外的IGTV常规器来强制执行某些结构约束 - 而不是纯稀疏性 - 在系数上。我们展示了SSASR估计器可以实现最佳估计和预测,这在设计矩阵上的一些温和条件下,这是对未知噪声水平的自适应。为了实现,提出了一种具有缩放的双向后向后分裂的有效算法,并被证明会聚。此外,我们对从胶质母细胞瘤多形样本和灰色图像获得的合成数据和实际数据进行实验评估。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号