首页> 外文期刊>Knowledge-Based Systems >State representation modeling for deep reinforcement learning based recommendation
【24h】

State representation modeling for deep reinforcement learning based recommendation

机译:基于深度加强学习建议的国家代表性建模

获取原文
获取原文并翻译 | 示例

摘要

Reinforcement learning techniques have recently been introduced to interactive recommender systems to capture the dynamic patterns of user behavior during the interaction with recommender systems and perform planning to optimize long-term performance. Most existing research work focuses on designing policy and learning algorithms of the recommender agent but seldom cares about the state representation of the environment, which is indeed essential for the recommendation decision making. In this paper, we first formulate the interactive recommender system problem with a deep reinforcement learning recommendation framework. Within this framework, we then carefully design four state representation schemes for learning the recommendation policy. Inspired by recent advances in feature interaction modeling in user response prediction, we discover that explicitly modeling user-item interactions in state representation can largely help the recommendation policy perform effective reinforcement learning. Extensive experiments on four real-world datasets are conducted under both the offline and simulated online evaluation settings. The experimental results demonstrate the proposed state representation schemes lead to better performance over the state-of-the-art methods. (C) 2020 Elsevier B.V. All rights reserved.
机译:最近介绍了增强学习技术以互动推荐系统,以捕获与推荐系统的交互期间的用户行为的动态模式,并执行计划以优化长期性能。大多数现有的研究工作侧重于设计推荐代理人的政策和学习算法,但很少关心环境的国家代表性,这对推荐决策来说确实是必不可少的。在本文中,我们首先用深度加强学习推荐框架制定交互式推荐系统问题。在此框架内,我们仔细设计了四种国家代表计划,以学习推荐政策。灵感来自最近在用户响应预测中的特征交互建模中的进步,我们发现状态表示中的明确建模用户项目交互可能在很大程度上有助于推荐政策执行有效的加强学习。在离线和模拟在线评估设置下进行四个现实数据集的广泛实验。实验结果证明了所提出的国家代表性方案导致最先进的方法更好地表现。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第12期|106170.1-106170.12|共12页
  • 作者单位

    Harbin Inst Technol Shenzhen Grad Sch Shenzhen Key Lab Internet Informat Collaborat Shenzhen 518055 Peoples R China;

    Noahs Ark Lab Huawei Peoples R China;

    Harbin Inst Technol Shenzhen Grad Sch Shenzhen Key Lab Internet Informat Collaborat Shenzhen 518055 Peoples R China;

    Shanghai Jiao Tong Univ Shanghai Peoples R China;

    Harbin Inst Technol Shenzhen Grad Sch Shenzhen Key Lab Internet Informat Collaborat Shenzhen 518055 Peoples R China;

    Shanghai Jiao Tong Univ Shanghai Peoples R China;

    Noahs Ark Lab Huawei Peoples R China;

    Noahs Ark Lab Huawei Peoples R China;

    Noahs Ark Lab Huawei Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    State representation modeling; Deep reinforcement learning; Recommendation;

    机译:国家代表性建模;深增强学习;推荐;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号