首页> 外文期刊>Computational Social Systems, IEEE Transactions on >Deep Representation Learning for Location-Based Recommendation
【24h】

Deep Representation Learning for Location-Based Recommendation

机译:基于位置的建议的深度代表学习

获取原文
获取原文并翻译 | 示例

摘要

Location-based recommendation has recently received a lot of attention in the communities of information service and mobile application. Its task is to provide personalized recommendations of points of interest (POIs) to users at a certain time and location. However, existing location-based recommendation models have at least two main drawbacks: first they cannot adequately capture semantic features of POIs and users, which may lead to unsatisfactory recommendations and second they cannot effectively address the cold-start problem. To address the above drawbacks, in this article, we first propose a novel deep representation learning-based model (DRLM) for improving the recommendation accuracy. In DRLM, we mainly focus on learning to accurately represent semantic features of POIs and users. Specifically, four co-occurrence matrices are constructed to produce four different original features for each POI, and a principal component analysis (PCA) algorithm is utilized to generate a semantic feature of each POI from its four original features. On the other hand, a three-modal simple recurrent unit (TMSRU) network is given to constructed semantic features of users using semantic features of POIs, times, and locations. We further propose minimum description length (MDL)-based and skyline-based strategies to address the cold-start issues for new users and new POIs, respectively. Through experiments on two real-world data sets, we show that compared with the state-of-the-art approaches, the proposed model DRLM can achieve the superior performance in terms of high recommendation accuracy and effectiveness in handling the cold-start problem.
机译:基于位置的建议最近在信息服务和移动应用程序的社区中获得了很多关注。其任务是向某个时间和地点向用户提供个性化的兴趣点(POI)的建议。然而,现有的基于位置的推荐模型至少有两个主要缺点:首先,他们无法充分捕获POI和用户的语义特征,这可能导致不令人满意的建议,而第二个可能会有效地解决冷启动问题。为了解决上述缺点,在本文中,我们首先提出了一种新的深度代表性学习的模型(DRLM),以提高推荐准确性。在DRLM中,我们主要专注于学习,准确地代表POI和用户的语义特征。具体地,构建四个共生发生矩阵以产生每个POI的四种不同的原始特征,并且利用主成分分析(PCA)算法从其四个原始特征生成每个POI的语义特征。另一方面,使用Pois,时间和位置的语义特征,给出了三种模态简单复发单元(TMSRU)网络构建了用户的语义特征。我们进一步提出了最小描述长度(MDL)和基于天际线的策略,以分别为新用户和新宝的冷启动问题提供解决。通过对两个现实世界数据集的实验,我们表明与最先进的方法相比,所提出的模型DRLM可以在处理冷启动问题方面实现优越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号