【24h】

Friend Recommendation in Location-Based Social Networks via Deep Pairwise Learning

机译:通过深度成对学习在基于位置的社交网络中推荐朋友

获取原文

摘要

Generating friend recommendations in location-based social networks is a challenging task, as we have to learn how different contextual factors influence users' behavior to form social relationships. For example, the contextual information of users' check-in behavior at common locations and users' activities at close regions may impact users' relationships. In this paper we propose a deep pairwise learning model, namely FDPL. Our model first learns the low dimensional latent embeddings of users' social relationships by jointly factorizing them with the available contextual information based on a multi-view learning strategy. In addition, to account for the fact that the contextual information is non-linearly correlated with users' social relationships we design a deep pairwise learning architecture based on a Bayesian personalized ranking strategy. We learn the non-linear deep representations of the computed low dimensional latent embeddings by formulating the top- k friend recommendation task at location-based social networks as a ranking task in our deep pairwise learning strategy. Our experiments on three real world location-based social networks from Brightkite, Gowalla and Foursquare show that the proposed FDPL model significantly outperforms other state-of-the-art methods. Finally, we evaluate the impact of contextual information on our model and we experimentally show that it is a key factor to boost the friend recommendation accuracy at location-based social networks.
机译:在基于位置的社交网络中生成朋友推荐是一项艰巨的任务,因为我们必须了解不同的背景因素如何影响用户的行为以形成社交关系。例如,在共同位置的用户签到行为和在邻近区域的用户活动的上下文信息可能会影响用户的关系。在本文中,我们提出了一种深度的成对学习模型,即FDPL。我们的模型首先通过基于多视图学习策略将用户的社会关系与可用的上下文信息一起分解,从而学习用户的社会关系的低维潜在嵌入。此外,要考虑到上下文信息与用户的社交关系非线性相关的事实,我们设计了一种基于贝叶斯个性化排名策略的深度成对学习架构。我们通过在基于位置的社交网络中将top-k朋友推荐任务公式化为我们的深度配对学习策略中的排名任务,来学习计算的低维潜在嵌入的非线性深度表示。我们在Brightkite,Gowalla和Foursquare的三个基于现实世界的基于位置的社交网络上进行的实验表明,所提出的FDPL模型明显优于其他最新方法。最后,我们评估了上下文信息对我们模型的影响,并通过实验表明,这是提高基于位置的社交网络上朋友推荐准确性的关键因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号