首页> 外文期刊>Knowledge-Based Systems >Robust orthogonal nonnegative matrix tri-factorization for data representation
【24h】

Robust orthogonal nonnegative matrix tri-factorization for data representation

机译:鲁棒正交非环境矩阵三分化数据表示

获取原文
获取原文并翻译 | 示例

摘要

Nonnegative matrix factorization (NMF) has been a vital data representation technique, and has demonstrated significant potential in the field of machine learning and data mining. Nonnegative matrix tri-factorization (NMTF) is an extension of NMF, and provides more degrees of freedom than NMF. In this paper, we propose the correntropy based orthogonal nonnegative matrix tri-factorization (CNMTF) algorithm, which is robust to noisy data contaminated by non-Gaussian noise and outliers. Different from previous NMF algorithms, CNMTF firstly applies correntropy to NMTF to measure the similarity, and preserves double orthogonality conditions and dual graph regularization. We adopt the half-quadratic technique to solve the optimization problem of CNMTF, and derive the multiplicative update rules. The complexity issue of CNMTF is also presented. Furthermore, the robustness of the proposed algorithm is analyzed, and the relationships between CNMTF and several previous NMF based methods are discussed. Experimental results demonstrate that the proposed CNMTF method has better performance on real world image and text datasets for clustering tasks, compared with several state-of-the-art methods. (C) 2020 Elsevier B.V. All rights reserved.
机译:非负矩阵分解(NMF)是一种重要的数据表示技术,并且在机器学习和数据挖掘领域已经表现出显着的潜力。非负矩阵三分化(NMTF)是NMF的延伸,并且提供比NMF更多的自由度。在本文中,我们提出了基于正交性的正交非环境矩阵三分化(CNMTF)算法,其对由非高斯噪声和异常值污染的噪声数据具有鲁棒性。与以前的NMF算法不同,CNMTF首先将Correntropy应用于NMTF以测量相似性,并保留双重正交条件和双图正规化。我们采用了半二次技术来解决CNMTF的优化问题,并导出乘法更新规则。还提出了CNMTF的复杂性问题。此外,分析了所提出的算法的鲁棒性,并且讨论了CNMTF与几个先前基于NMF的方法之间的关系。实验结果表明,与多种最先进的方法相比,所提出的CNMTF方法在真实世界图像和文本数据集中具有更好的性能,以进行聚类任务。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号