首页> 外文期刊>Knowledge-Based Systems >A Dynamic Parameter Enhanced Network for distant supervised relation extraction
【24h】

A Dynamic Parameter Enhanced Network for distant supervised relation extraction

机译:用于远程监督相关提取的动态参数增强网络

获取原文
获取原文并翻译 | 示例

摘要

Distant Supervised Relation Extraction (DSRE) is usually formulated as a problem about classifying a bag of sentences that contains two query entities into the predefined relation classes. Most existing methods consider those relation classes as distinct semantic categories while ignoring their potential connections to query entities. In this paper, we propose to leverage this connection to improve the relation extraction accuracy. Our key ideas are twofold: (1) For sentences belonging to the same relation class, the keywords to express the relation can vary according to the input query entities, i.e., style shift. To account for this style shift, the model can adjust its parameters in accordance with entity types. (2) Some relation classes are semantically similar, and the entity types appear in one relation may also appear in others. Therefore, it can be trained across different relation classes and further enhance those classes with few samples, i.e., long-tail relations. To unify these two arguments, we developed a novel Dynamic Parameter Enhanced Network (DPEN) for Relation Extraction, which introduces a parameter generator that can dynamically generates the network parameters according to the input query entity types and relation classes. By using this mechanism, the network can simultaneously handle the style shift problem and enhance the prediction accuracy for long-tail relations. Through extensive experiments, our method which is built on the top of the non-BERT-based or BERT-based models, can achieve superior performance over the state-of-the-art methods. (C) 2020 Elsevier B.V. All rights reserved.
机译:遥远的监督关系提取(DSRE)通常被制定为对分类一袋句子的问题,其中包含两个查询实体进入预定义关系类。大多数现有方法将这些关系类视为明显的语义类别,同时忽略其潜在连接到查询实体。在本文中,我们建议利用这种联系来提高关系提取精度。我们的关键思想是双重的:(1)对于属于同一关系类的句子,表示表达关系的关键字可以根据输入查询实体,即样式转移而变化。要考虑此样式Shift,该模型可以根据实体类型调整其参数。 (2)一些关系类是语义上的,而实体类型也可以在一个关系中出现,也可能出现在其他关系中。因此,它可以跨越不同关系类别培训,并进一步增强这些类别,其中一些样本,即长尾关系。为了统一这两个参数,我们开发了一种用于关系提取的新型动态参数增强网络(DPEN),这引入了一个参数发生器,该参数发生器可以根据输入查询实体类型和关系类动态生成网络参数。通过使用这种机制,网络可以同时处理风格的换档问题,提高长尾关系的预测精度。通过广泛的实验,我们的方法是基于非BERT的基于伯爵或基于BERT的模型的方法,可以通过最先进的方法实现卓越的性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号