首页> 外文期刊>Knowledge-Based Systems >Detecting shilling attacks in social recommender systems based on time series analysis and trust features
【24h】

Detecting shilling attacks in social recommender systems based on time series analysis and trust features

机译:根据时间序列分析和信任特征检测社会推荐系统的先令攻击

获取原文
获取原文并翻译 | 示例

摘要

In social recommender systems or trust-based recommender systems, malicious users can bias the recommendations by injecting a large number of fake profiles and by building bogus trust relationships. The existing shilling attack detection methods suffer from low precision when detecting attacks in social recommender systems because they focus mainly on the rating pattern differences between attack profiles and genuine ones and ignore the trust relationships between users. In this paper, we propose an approach for detecting shilling attacks in social recommender systems based on time series analysis and trust features (TSA-TF). Firstly, we construct rating distribution time series for items and propose a dynamic rating distribution prediction model to detect suspicious items by using a single exponential smoothing method. Then, we filter out a part of genuine user profiles by analyzing suspicious items and obtain the set of suspicious user profiles. Secondly, we propose four features by combining rating patterns and trust relationships and train a support vector machine (SVM) classifier to discriminate attack profiles in the set of suspicious user profiles. Experiments on the CiaoDVD dataset and Epinions dataset show that the proposed approach can improve the detection precision while maintaining a high recall. (C) 2019 Elsevier B.V. All rights reserved.
机译:在社交推荐系统或基于信任的推荐系统中,恶意用户可以通过注入大量虚假配置文件并通过建立虚假信任关系来偏见这些建议。当检测社交推荐系统中的攻击时,现有的先令攻击检测方法遭受了低精度,因为它们主要关注攻击配置文件和真正的额定模式差异并忽略用户之间的信任关系。在本文中,我们提出了一种基于时间序列分析和信任特征(TSA-TF)的社会推荐系统中检测Shileding攻击的方法。首先,我们构建评级分配时间序列进行物品,并提出动态评级分布预测模型来使用单指数平滑方法来检测可疑项目。然后,通过分析可疑项目并获取可疑用户配置文件集,我们通过分析了一部分真正的用户配置文件。其次,我们通过组合评级模式和信任关系并培训支持向量机(SVM)分类器来提出四个特征,以在可疑用户配置文件集中区分攻击配置文件。 Ciaodvd数据集和渗流数据集的实验表明,该方法可以提高检测精度,同时保持高召回。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2019年第15期|25-47|共23页
  • 作者

    Xu Yishu; Zhang Fuzhi;

  • 作者单位

    Yanshan Univ Sch Informat Sci & Engn Qinhuangdao Hebei Peoples R China|Key Lab Comp Virtual Technol & Syst Integrat Hebe Qinhuangdao Hebei Peoples R China|Key Lab Software Engn Hebei Prov Qinhuangdao Hebei Peoples R China|Beijing Univ Posts & Telecommun Century Coll Sch Comp Sci & Technol Dept Beijing Peoples R China;

    Yanshan Univ Sch Informat Sci & Engn Qinhuangdao Hebei Peoples R China|Key Lab Comp Virtual Technol & Syst Integrat Hebe Qinhuangdao Hebei Peoples R China|Key Lab Software Engn Hebei Prov Qinhuangdao Hebei Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Social recommender systems; Shilling attacks; Shilling attack detection; Time series analysis; Trust features;

    机译:社会推荐系统;先令攻击;先令攻击检测;时间序列分析;信任功能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号