首页> 外文期刊>Knowledge-Based Systems >Detecting shilling attacks in social recommender systems based on time series analysis and trust features
【24h】

Detecting shilling attacks in social recommender systems based on time series analysis and trust features

机译:根据时间序列分析和信任特征检测社交推荐系统中的先令攻击

获取原文
获取原文并翻译 | 示例

摘要

In social recommender systems or trust-based recommender systems, malicious users can bias the recommendations by injecting a large number of fake profiles and by building bogus trust relationships. The existing shilling attack detection methods suffer from low precision when detecting attacks in social recommender systems because they focus mainly on the rating pattern differences between attack profiles and genuine ones and ignore the trust relationships between users. In this paper, we propose an approach for detecting shilling attacks in social recommender systems based on time series analysis and trust features (TSA-TF). Firstly, we construct rating distribution time series for items and propose a dynamic rating distribution prediction model to detect suspicious items by using a single exponential smoothing method. Then, we filter out a part of genuine user profiles by analyzing suspicious items and obtain the set of suspicious user profiles. Secondly, we propose four features by combining rating patterns and trust relationships and train a support vector machine (SVM) classifier to discriminate attack profiles in the set of suspicious user profiles. Experiments on the CiaoDVD dataset and Epinions dataset show that the proposed approach can improve the detection precision while maintaining a high recall. (C) 2019 Elsevier B.V. All rights reserved.
机译:在社交推荐器系统或基于信任的推荐器系统中,恶意用户可以通过注入大量伪造的个人资料并建立虚假的信任关系来偏向推荐。现有的先令攻击检测方法在社交推荐系统中检测攻击时精度较低,因为它们主要关注攻击配置文件与真实配置文件之间的评级模式差异,而忽略了用户之间的信任关系。在本文中,我们提出了一种基于时间序列分析和信任特征(TSA-TF)的社交推荐系统中的先发攻击检测方法。首先,我们建立了物品的等级分布时间序列,并提出了一种动态等级分布预测模型,该模型通过使用单一指数平滑方法来检测可疑物品。然后,我们通过分析可疑项目过滤掉部分真实的用户配置文件,并获得可疑用户配置文件集。其次,我们通过结合评级模式和信任关系并训练支持向量机(SVM)分类器来区分可疑用户配置文件集中的攻击配置文件,提出了四个功能。在CiaoDVD数据集和Epinions数据集上进行的实验表明,该方法可以提高检测精度,同时保持较高的查全率。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2019年第15期|25-47|共23页
  • 作者

    Xu Yishu; Zhang Fuzhi;

  • 作者单位

    Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao, Hebei, Peoples R China|Key Lab Comp Virtual Technol & Syst Integrat Hebe, Qinhuangdao, Hebei, Peoples R China|Key Lab Software Engn Hebei Prov, Qinhuangdao, Hebei, Peoples R China|Beijing Univ Posts & Telecommun, Century Coll, Sch Comp Sci & Technol Dept, Beijing, Peoples R China;

    Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao, Hebei, Peoples R China|Key Lab Comp Virtual Technol & Syst Integrat Hebe, Qinhuangdao, Hebei, Peoples R China|Key Lab Software Engn Hebei Prov, Qinhuangdao, Hebei, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Social recommender systems; Shilling attacks; Shilling attack detection; Time series analysis; Trust features;

    机译:社交推荐系统;先令攻击;先令攻击检测;时间序列分析;信任特征;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号