首页> 外文期刊>Knowledge-Based Systems >Detecting shilling attacks in recommender systems based on analysis of user rating behavior
【24h】

Detecting shilling attacks in recommender systems based on analysis of user rating behavior

机译:根据用户评级行为分析检测推荐系统的先令攻击

获取原文
获取原文并翻译 | 示例

摘要

The existing unsupervised methods for detecting shilling attacks are mostly based on the rating patterns of users, ignoring the rating behavior difference between genuine users and attack users, and these methods suffer from low accuracy in detecting various shilling attacks without a priori knowledge of the attacks. To address these limitations, we propose a novel unsupervised shilling attack detection model based on an analysis of user rating behavior. First, we identify the target item(s) and the corresponding intentions of the attack users by analyzing the deviation of rating tendencies on each item, and based on this analysis, a set of suspicious users is constructed. Second, we analyze the users' rating behaviors from an interest preference and rating preference perspective. In particular, we measure the diversity and memory of users' interest preferences by entropy and block entropy, respectively, and we analyze the memory of user rating preferences by a self-correlation analysis. Finally, we calculate the suspicious degree and spot attack users in the set of suspicious users based on measurements of user rating behavior. Experimental results on the Netflix dataset, the MovieLens 1M dataset and the sampled Amazon review dataset demonstrate the effectiveness of the proposed detection model. (C) 2019 Elsevier B.V. All rights reserved.
机译:用于检测先令攻击的现有无监督方法主要是基于用户的评级模式,忽略了正版用户和攻击用户之间的评级行为差异,并且这些方法在没有先验的攻击的情况下检测各种先令攻击时遭受低精度。为了解决这些限制,我们提出了一种基于用户评级行为的分析的新型无监督的先令攻击检测模型。首先,我们通过分析每个项目的评级趋势偏差,并基于此分析,构建了一组可疑用户,识别目标项目和攻击用户的相应意图。其次,我们从兴趣偏好和评级偏好角度分析用户的评级行为。特别是,我们通过熵和阻止熵衡量用户兴趣偏好的多样性和记忆,并且我们通过自相关分析分析用户额定值偏好的存储器。最后,我们根据用户评级行为的测量计算可疑用户中的可疑程度和现货攻击用户。 Netflix DataSet上的实验结果,Movielens 1M数据集和采样的Amazon Review DataSet证明了所提出的检测模型的有效性。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2019年第1期|22-43|共22页
  • 作者

    Cai Hongyun; Zhang Fuzhi;

  • 作者单位

    Yanshan Univ Sch Informat Sci & Engn Qinhuangdao Hebei Peoples R China|Hebei Univ Sch Cyber Secur & Comp Baoding Hebei Peoples R China|Key Lab Comp Virtual Technol & Syst Integrat Hebe Qinhuangdao Hebei Peoples R China|Key Lab Software Engn Hebei Prov Qinhuangdao Hebei Peoples R China;

    Yanshan Univ Sch Informat Sci & Engn Qinhuangdao Hebei Peoples R China|Key Lab Comp Virtual Technol & Syst Integrat Hebe Qinhuangdao Hebei Peoples R China|Key Lab Software Engn Hebei Prov Qinhuangdao Hebei Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Recommender systems; Shilling attacks; Shilling attack detection; Target item identification; User rating behavior analysis;

    机译:推荐系统;先令攻击;先令攻击检测;目标物品识别;用户评级行为分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号