首页> 外文期刊>Knowledge-Based Systems >Identifying top persuaders in mixed trust networks for electronic marketing based on word-of-mouth
【24h】

Identifying top persuaders in mixed trust networks for electronic marketing based on word-of-mouth

机译:识别基于口碑传播的电子营销混合信任网络中的顶级说服者

获取原文
获取原文并翻译 | 示例

摘要

The identification of top persuaders from social networking websites is increasingly attracting attention because they can significantly affect consumers' purchasing decisions in electronic word-of-mouth (eWOM) marketing. Existing studies on the identification of top persuaders have mainly focused on the idea of trust and have not considered distrust. However, this omission may lead to a high negative impact of the top persuaders identified from trust networks. To address this issue in the context of mixed trust networks, this study formulates the top persuader identification problem and develops a novel approach to identifying top persuaders. The structural properties of mixed trust networks are investigated through four measures: the degree of distribution, the correlation coefficient of trust and distrust, the cumulative distribution of the ratio between the degree of distrust and the degree of trust, and the mix pattern. To adapt to the context of mixed trust networks, a mixed trust PageRank (MTPR) index is conceived to evaluate the influential power of a top persuader. Reinforced by the dimensions of trust and distrust, the MTPR-based approach is proposed to identify top persuaders in mixed trust networks. The experimental results using real-world data collected from Epinions show that the proposed approach outperforms the degree centrality approach and the PageRank approach. (C) 2019 Elsevier B.V. All rights reserved.
机译:从社交网站上识别出最有说服力的人越来越引起人们的注意,因为它们会极大地影响消费者在电子口碑(eWOM)营销中的购买决策。现有的关于识别顶级说服者的研究主要集中在信任的概念上,并未考虑不信任。但是,这种疏忽可能导致从信任网络中识别出的顶级说服者产生很高的负面影响。为了在混合信任网络的背景下解决这个问题,本研究提出了顶级说服者识别问题,并开发了一种识别顶级说服者的新颖方法。通过四个指标对混合信任网络的结构特性进行了研究:分布度,信任与不信任的相关系数,不信任度与信任度之比的累积分布以及混合模式。为了适应混合信任网络的上下文,可以考虑使用混合信任PageRank(MTPR)索引来评估顶级说服者的影响力。受信任和不信任因素的影响,提出了基于MTPR的方法来识别混合信任网络中的顶级说服者。使用从Epinions收集的真实数据的实验结果表明,所提出的方法优于度中心方法和PageRank方法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号