首页> 外文期刊>Knowledge-Based Systems >A feature selection approach for hyperspectral image based on modified ant lion optimizer
【24h】

A feature selection approach for hyperspectral image based on modified ant lion optimizer

机译:基于改进蚁群优化器的高光谱图像特征选择方法

获取原文
获取原文并翻译 | 示例

摘要

Feature selection is one of the most important issues in hyperspectral image (HSI) classification to achieve high correlation between the adjacent bands. The main concern is selecting fewer bands with the highest accuracy as possible. Generally, it is a combinatorial optimization problem and cannot be fully solved by swarm intelligence algorithms. Ant lion optimizer (ALO) is a newly proposed swarm intelligence algorithm that mimics the swarming behaviour of antlions. In addition, wavelet support vector machine (WSVM) is able to enhance the stability of the classification result, and Levy flight helps swarm intelligence algorithms jump out of the local optimum. Therefore, in this paper, a novel feature selection method based on a modified ALO (MALO) and WSVM is proposed to reduce the dimensionality of HSIs. The proposed method is compared with some state-of-the-art algorithms on some HSI datasets. Moreover, a new evaluating criteria is formulated to estimate the performance of feature selection, and the classification accuracy and selected number of bands are balanced as much as possible. Experimental results demonstrate that the proposed method outperforms other approaches, finds the optimal solution with a reasonable convergence orientation, and its classification accuracy is satisfied with fewer bands, it is robust, adaptive and might be applied for practical work of feature selection. (C) 2018 Elsevier B.V. All rights reserved.
机译:特征选择是高光谱图像(HSI)分类中实现相邻波段之间高度相关的最重要问题之一。主要考虑的是选择尽可能少的具有最高准确度的频段。通常,这是一个组合优化问题,无法通过群体智能算法完全解决。蚁群优化器(ALO)是一种新提出的群智能算法,用于模仿蚂蚁群的行为。此外,小波支持向量机(WSVM)能够增强分类结果的稳定性,而Levy Flight可以帮助群体智能算法跳出局部最优值。因此,本文提出了一种基于改进的ALO(MALO)和WSVM的特征选择方法,以降低HSI的维数。将该方法与某些HSI数据集上的一些最新算法进行了比较。此外,制定了新的评估标准以估计特征选择的性能,并且尽可能地平衡了分类精度和选定的波段数。实验结果表明,该方法优于其他方法,找到了具有合理收敛方向的最优解,并且在较少频带的情况下仍能满足分类精度,具有鲁棒性,自适应性,可用于特征选择的实际工作。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号