首页> 外文期刊>Knowledge-Based Systems >Day-ahead traffic flow forecasting based on a deep belief network optimized by the multi-objective particle swarm algorithm
【24h】

Day-ahead traffic flow forecasting based on a deep belief network optimized by the multi-objective particle swarm algorithm

机译:基于多目标粒子群算法优化的深度置信网络的日行交通量预测

获取原文
获取原文并翻译 | 示例

摘要

Traffic flow forecasting is a necessary part in the intelligent transportation systems in supporting dynamic and proactive traffic control and making traffic management plan. However, most of the previous studies attempting to build traffic flow forecasting models focus on short-term forecasting as the next step. In this paper, a deep feature leaning approach is proposed to predict short-term traffic flow in the following multiple steps using supervised learning techniques. To achieve traffic flow forecasting for the next day, an advanced multi-objective particle swarm optimization algorithm is applied to optimize some parameters in deep belief networks. The modified model can boost the accuracy of the forecasting results and enhance its multiple step prediction ability. Using real-time and historical temporal-spatial traffic data, dayahead prediction experiment is implemented. The results of the hybrid model are compared with several commonly used benchmark models and some improved deep neural network based on evaluation criteria. Also, the proposed optimization algorithm is compared with the traditional particle swarm optimization algorithm. Furthermore, the significance in the number of hidden layers is analyzed. When the layers are increasing more than 4, the performance of the proposed model stops improving significantly. The results indicate the proposed model can extract complex features of traffic flow and therefore the forecasting accuracy and stability can be effectively improved. (C) 2019 Elsevier B.V. All rights reserved.
机译:交通流预测是智能交通系统中支持动态主动交通控制和制定交通管理计划的必要部分。但是,先前尝试建立交通流量预测模型的大多数研究都将短期预测作为下一步工作。本文提出了一种基于深度学习的方法,可以使用监督学习技术来预测以下多个步骤中的短期交通流量。为了实现第二天的交通流量预测,应用了一种先进的多目标粒子群优化算法来优化深度置信网络中的某些参数。改进后的模型可以提高预测结果的准确性,增强其多步预测能力。利用实时和历史时空交通数据,实现超前预报实验。将混合模型的结果与几种常用的基准模型和一些基于评估标准的改进的深度神经网络进行了比较。同时,将该算法与传统的粒子群算法进行了比较。此外,分析了隐藏层数的重要性。当层数增加到4以上时,所提出模型的性能将停止明显改善。结果表明,该模型可以提取交通流的复杂特征,从而可以有效提高预测的准确性和稳定性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2019年第15期|1-14|共14页
  • 作者单位

    Southeast Univ, Sch Transportat, Nanjing, Jiangsu, Peoples R China|Southeast Univ, Res Ctr Internet Mobil, Nanjing, Jiangsu, Peoples R China|Univ Wisconsin, Dept Civil & Environm Engn, Madison, WI 53706 USA;

    Univ Wisconsin, Dept Civil & Environm Engn, Madison, WI 53706 USA;

    Southeast Univ, Sch Transportat, Nanjing, Jiangsu, Peoples R China|Southeast Univ, Res Ctr Internet Mobil, Nanjing, Jiangsu, Peoples R China;

    Southeast Univ, Sch Transportat, Nanjing, Jiangsu, Peoples R China|Southeast Univ, Res Ctr Internet Mobil, Nanjing, Jiangsu, Peoples R China;

    Changan Univ, Sch Highway, Xian, Shaanxi, Peoples R China;

    Southeast Univ, Sch Transportat, Nanjing, Jiangsu, Peoples R China|Southeast Univ, Res Ctr Internet Mobil, Nanjing, Jiangsu, Peoples R China|Univ Wisconsin, Dept Civil & Environm Engn, Madison, WI 53706 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Traffic forecasting; Deep learning; Restricted Boltzmann machine; Neural networks; Stability;

    机译:交通预测;深度学习;受限玻尔兹曼机;神经网络;稳定性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号