首页> 外文期刊>Knowledge-Based Systems >Parallel computing method of deep belief networks and its application to traffic flow prediction
【24h】

Parallel computing method of deep belief networks and its application to traffic flow prediction

机译:深度置信网络的并行计算方法及其在交通流预测中的应用

获取原文
获取原文并翻译 | 示例

摘要

Deep belief networks (DBNs) with outstanding advantages of learning input data features have attained particular attention and are applied widely in image processing, speech recognition, natural language interpretation, disease diagnosis, among others. However, owing to large data, the training processes of DBNs are time-consuming and may not satisfy the requirements of real-time application systems. In this study, a single dataset is decomposed into multiple subdatasets that are distributed to multiple computing nodes. Multiple computing nodes learn the features of their own subdatasets. On the precondition of the remaining features where one computing node learns from the total dataset, the single dataset learning models and algorithms are extended to the cases where multiple computing nodes learn multiple subdatasets in a parallel manner. Learning models and algorithms are proposed for the parallel computing of DBN learning processes. A master–slave parallel computing structure is designed, where the slave computing nodes learn the features of their respective subdatasets and transmit them to the master computing node. The master computing node is critical in synthesizing the learned features from the respective slave computing nodes. The broadcast, synchronization, and synthesis are repeated until all features of subdatasets have been learned. The proposed parallel computing method is applied to traffic flow prediction using practical traffic flow data. Our experimental results verify the effectiveness of the parallel computing method of DBN learning processes in terms of decreasing pre-training and fine-tuning times and maintaining the prominent feature learning abilities.
机译:具有学习输入数据特征的突出优点的深度信念网络(DBN)受到了特别的关注,并广泛应用于图像处理,语音识别,自然语言解释,疾病诊断等方面。但是,由于数据量大,DBN的训练过程非常耗时,可能无法满足实时应用系统的要求。在这项研究中,单个数据集被分解为多个子数据集,这些子数据集分布到多个计算节点。多个计算节点学习自己的子数据集的功能。在一个计算节点从总数据集中学习的其余功能的前提下,单个数据集学习模型和算法可扩展到多个计算节点以并行方式学习多个子数据集的情况。提出了用于DBN学习过程的并行计算的学习模型和算法。设计了主从并行计算结构,从属并行计算节点学习各自子数据集的特征,并将其传输到主计算节点。主计算节点对于从各个从计算节点合成学习到的特征至关重要。重复广播,同步和综合,直到了解了子数据集的所有功能。所提出的并行计算方法被应用于使用实际交通流数据的交通流预测中。我们的实验结果证明了DBN学习过程的并行计算方法在减少预训练和微调时间以及保持突出的特征学习能力方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号