首页> 外文OA文献 >Self-Organizing Traffic Flow Prediction with an Optimized Deep Belief Network for Internet of Vehicles
【2h】

Self-Organizing Traffic Flow Prediction with an Optimized Deep Belief Network for Internet of Vehicles

机译:自组织交通流预测,具有用于车辆互联网的优化的深度信仰网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To assist in the broadcasting of time-critical traffic information in an Internet of Vehicles (IoV) and vehicular sensor networks (VSN), fast network connectivity is needed. Accurate traffic information prediction can improve traffic congestion and operation efficiency, which helps to reduce commute times, noise and carbon emissions. In this study, we present a novel approach for predicting the traffic flow volume by using traffic data in self-organizing vehicular networks. The proposed method is based on using a probabilistic generative neural network techniques called deep belief network (DBN) that includes multiple layers of restricted Boltzmann machine (RBM) auto-encoders. Time series data generated from the roadside units (RSUs) for five highway links are used by a three layer DBN to extract and learn key input features for constructing a model to predict traffic flow. Back-propagation is utilized as a general learning algorithm for fine-tuning the weight parameters among the visible and hidden layers of RBMs. During the training process the firefly algorithm (FFA) is applied for optimizing the DBN topology and learning rate parameter. Monte Carlo simulations are used to assess the accuracy of the prediction model. The results show that the proposed model achieves superior performance accuracy for predicting traffic flow in comparison with other approaches applied in the literature. The proposed approach can help to solve the problem of traffic congestion, and provide guidance and advice for road users and traffic regulators.
机译:为了帮助在车辆互联网(IOV)和车辆传感器网络(VSN)中广播时间关键交通信息,需要快速网络连接。准确的交通信息预测可以提高交通拥堵和运营效率,有助于降低通勤时间,噪声和碳排放。在本研究中,我们通过在自组织车辆网络中使用交通数据来提出一种用于预测交通流量的新方法。所提出的方法基于使用称为深度信念网络(DBN)的概率生成神经网络技术,包括多个限制Boltzmann机器(RBM)自动编码器。三层DBN使用从路边单元(RSU)产生的时间序列数据以提取和学习用于构建模型以预测业务流量的键输入功能。反向传播用作微调RBMS的可见层和隐藏层中的重量参数的一般学习算法。在培训过程中,萤火虫算法(FFA)应用于优化DBN拓扑和学习率参数。蒙特卡罗模拟用于评估预测模型的准确性。结果表明,拟议的模型实现了卓越的性能准确性,用于预测交通流量与文献中应用的其他方法相比。拟议的方法可以帮助解决交通拥堵问题,并为道路用户和交通监管机构提供指导和建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号