首页> 外文期刊>Knowledge-Based Systems >Meta-learning Optimal Parameter Values In Non-stationary Environments
【24h】

Meta-learning Optimal Parameter Values In Non-stationary Environments

机译:非平稳环境中的元学习最优参数值

获取原文
获取原文并翻译 | 示例

摘要

Many learning and heuristic search algorithms require tuning of parameters to achieve optimum performance. In stationary and deterministic problem domains this is usually achieved through off-line sensitivity analysis. However, this method breaks down in non-stationary and non-deterministic environments, where the optimal set of values for the parameters keep changing over time. What is needed in such scenarios is a meta-learning (ML) mechanism that can learn the optimal set of parameters on-line while the learning algorithm is trying to learn its target concept. In this paper, we present a simple meta-learning algorithm to learn the temperature parameter of the Softmax reinforcement-learning (RL) algorithm. We present results to show the efficacy of this meta-learning algorithm in two domains.
机译:许多学习和启发式搜索算法都需要调整参数以获得最佳性能。在固定的和确定性的问题域中,这通常是通过离线敏感性分析来实现的。但是,此方法在非平稳和不确定的环境中会失效,在该环境中,参数的最佳值集会随着时间不断变化。在这种情况下,需要一种元学习(ML)机制,该机制可以在学习算法尝试学习其目标概念的同时在线学习最佳参数集。在本文中,我们提出了一种简单的元学习算法,用于学习Softmax强化学习(RL)算法的温度参数。我们提出的结果显示了该元学习算法在两个领域中的功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号