首页> 外文期刊>Knowledge-Based Systems >Two methods of selecting Gaussian kernel parameters for one-class SVM and their application to fault detection
【24h】

Two methods of selecting Gaussian kernel parameters for one-class SVM and their application to fault detection

机译:一类支持向量机选择高斯核参数的两种方法及其在故障检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

As one of the methods to solve one-class classification problems (OCC), one-class support vector machines (OCSVM) have been applied to fault detection in recent years. Among all the kernels available for OCSVM, the Gaussian kernel is the most commonly used one. The selection of Gaussian kernel parameters influences greatly the performances of classifiers, which remains as an open problem. In this paper two methods are proposed to select Gaussian kernel parameters in OCSVM: according to the first one, the parameters are selected using the information of the farthest and the nearest neighbors of each sample; using the second one, the parameters are determined via detecting the "tightness" of the decision boundaries. The two proposed methods are tested on UCI data sets and Tennessee Eastman Process benchmark data sets. The results show that, the two proposed methods can be used to select suitable parameters for the Gaussian kernel, enabling the resulting OCSVM models to perform well on fault detection.
机译:作为解决一类分类问题(OCC)的方法之一,近年来,一类支持向量机(OCSVM)已应用于故障检测。在OCSVM可用的所有内核中,高斯内核是最常用的内核。高斯核参数的选择极大地影响了分类器的性能,这仍然是一个悬而未决的问题。本文提出了两种在OCSVM中选择高斯核参数的方法:根据第一种方法,使用每个样本的最远和最邻近的信息来选择参数。使用第二个参数,可以通过检测决策边界的“紧密度”来确定参数。在UCI数据集和田纳西伊士曼过程基准数据集上测试了这两种建议的方法。结果表明,所提出的两种方法可用于为高斯核选择合适的参数,从而使所得的OCSVM模型在故障检测中表现良好。

著录项

  • 来源
    《Knowledge-Based Systems》 |2014年第3期|75-84|共10页
  • 作者单位

    Institute of Control Theory and Technology, Department of Automation, Tsinghua University, Beijing 100084, China;

    Institute of Control Theory and Technology, Department of Automation, Tsinghua University, Beijing 100084, China;

    Institute of Control Theory and Technology, Department of Automation, Tsinghua University, Beijing 100084, China;

    Institute of Control Theory and Technology, Department of Automation, Tsinghua University, Beijing 100084, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    One-class classification; OCSVM; Gaussian kernel; Parameter selection; Fault detection;

    机译:一类分类;OCSVM;高斯核参数选择;故障检测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号