首页> 外文期刊>Neurocomputing >Online fault detection methods for chillers combining extended kalman filter and recursive one-class SVM
【24h】

Online fault detection methods for chillers combining extended kalman filter and recursive one-class SVM

机译:结合扩展卡尔曼滤波器和递归一类支持向量机的冷水机组在线故障检测方法

获取原文
获取原文并翻译 | 示例

摘要

Automatic, accurate and online fault detection of heating ventilation air conditioning (HVAC) subsystems, such as chillers, is highly demanded in building management system (BMS) to prevent energy waste and high maintenance cost. However, most fault detection techniques require rich faulty training data which is usually unavailable. In this study, a novel hybrid method is proposed to detect faults for chiller subsystems without any faulty training data available, i.e. by training the normal data only. A hybrid feature selection algorithm is applied to the chiller dataset collected by ASHRAE project 1043-RP to select the most significant feature variables. An online classification framework is introduced by combining an Extended Kalman Filter (EKF) model and a recursive one-class support vector machine (ROSVM). Experiment results show that the proposing algorithm detects typical chiller faults with high accuracy rates and requires less feature variables compared to existing works.
机译:建筑物管理系统(BMS)强烈要求对供暖通风空调(HVAC)子系统(例如冷水机组)进行自动,准确和在线的故障检测,以防止浪费能源和高昂的维护成本。但是,大多数故障检测技术需要丰富的故障训练数据,而这通常是不可用的。在这项研究中,提出了一种新颖的混合方法来检测冷却器子系统的故障,而无需提供任何错误的训练数据,即仅通过训练正常数据即可。将混合特征选择算法应用于ASHRAE项目1043-RP收集的冷却器数据集,以选择最重要的特征变量。通过结合扩展卡尔曼滤波器(EKF)模型和递归一类支持向量机(ROSVM)引入了在线分类框架。实验结果表明,与现有技术相比,提出的算法能够以较高的准确率检测出典型的冷水机组故障,并且所需的特征变量更少。

著录项

  • 来源
    《Neurocomputing》 |2017年第8期|205-212|共8页
  • 作者

    Yan Ke; Ji Zhiwei; Shen Wen;

  • 作者单位

    China Jiliang Univ, Coll Informat Engn, 258 Xueyuan St, Hangzhou 310018, Zhejiang, Peoples R China;

    Zhejiang Gongshang Univ, Sch Informat & Elect Engn, 18 Xuezheng Rd, Hangzhou 310018, Zhejiang, Peoples R China;

    Univ Calif Irvine, Dept Informat, Irvine, CA 92697 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Chiller; Fault detection; One-class support vector machine; Extended kalman filter;

    机译:冷水机;故障检测;一类支持向量机;扩展卡尔曼滤波;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号