首页> 外文会议>Third International Workshop on Pattern Recognition >Indirect Gaussian kernel parameter optimization for one-class SVM in fault detection
【24h】

Indirect Gaussian kernel parameter optimization for one-class SVM in fault detection

机译:一类支持向量机在故障检测中的间接高斯核参数优化

获取原文
获取原文并翻译 | 示例

摘要

One-class SVM (OCSVM) is widely adopted as an effective method for fault detection, and its Gaussian kernel parameter directly influences its fault detection performance. However, the absence of fault samples in the training set makes it difficult to optimize this parameter. To solve this problem, a novel method of Gaussian kernel parameter optimization is proposed in this paper. This method first automatically selects edge and inner samples from the training set, and then optimizes the parameter through adjusting the distribution of the mappings of edge and inner samples in the feature space, so as to facilitate the building of OCSVM models. Moreover, this method needs not to train OCSVM models during the parameter optimization, which can save computational sources. The effectiveness of this proposed method is testified by experiments on 2D data sets and UCI data sets.
机译:一类支持向量机(OCSVM)被广泛用作故障检测的有效方法,其高斯核参数直接影响其故障检测性能。但是,由于训练集中没有故障样本,因此难以优化此参数。针对这一问题,提出了一种新的高斯核参数优化方法。该方法首先从训练集中自动选择边缘和内部样本,然后通过调整特征空间中边缘和内部样本的映射分布来优化参数,以利于建立OCSVM模型。此外,该方法无需在参数优化过程中训练OCSVM模型,从而节省了计算资源。通过在2D数据集和UCI数据集上进行的实验证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号