首页> 外文期刊>Knowledge-Based Systems >Bilinear low-rank coding framework and extension for robust image recovery and feature representation
【24h】

Bilinear low-rank coding framework and extension for robust image recovery and feature representation

机译:双线性低秩编码框架和扩展,可实现可靠的图像恢复和特征表示

获取原文
获取原文并翻译 | 示例

摘要

We mainly study the low-rank image recovery problem by proposing a bilinear low-rank coding framework called Tensor Low-Rank Representation. For enhanced low-rank recovery and error correction, our method constructs a low-rank tensor subspace to reconstruct given images along row and column directions simultaneously by computing two low-rank matrices alternately from a nuclear norm minimization problem, so both column and row information of data can be effectively preserved. Our bilinear approach seamlessly integrates the low-rank coding and dictionary learning into a unified framework. Thus, our formulation can be treated as enhanced Inductive Robust Principal Component Analysis with noise removed by low-rank representation, and can also be considered as the enhanced low-rank representation with a clean informative dictionary via low-rank embedding. To enable our method to include outside images, the out-of-sample extension is also presented by regularizing the model to correlate image features with the low-rank recovery of the images. Comparison with other criteria shows that our model exhibits stronger robustness and enhanced performance. We also use the outputted bilinear low-rank codes for feature learning. Two unsupervised local and global low-rank subspace learning methods are proposed for extracting image features for classification. Simulations verified the validity of our techniques for image recovery, representation and classification. (C) 2015 Elsevier B.V. All rights reserved.
机译:我们主要通过提出一个称为Tensor Low-Rank Representation的双线性低秩编码框架来研究低秩图像恢复问题。为了增强低秩恢复和纠错,我们的方法构造了一个低秩张量子空间,通过根据核范数最小化问题交替计算两个低秩矩阵,同时沿行和列方向重建给定图像。数据可以得到有效保存。我们的双线性方法将低秩编码和字典学习无缝集成到一个统一的框架中。因此,我们的公式可以看作是增强的归纳稳健主成分分析,并通过低秩表示消除了噪声,也可以认为是通过低秩嵌入具有清晰信息字典的增强低秩表示。为了使我们的方法能够包含外部图像,还通过对模型进行正则化来提出样本外扩展,以将图像特征与图像的低秩恢复相关联。与其他标准的比较表明,我们的模型具有更强的鲁棒性和增强的性能。我们还将输出的双线性低秩代码用于特征学习。提出了两种无监督的局部和全局低秩子空间学习方法,用于提取图像特征进行分类。仿真证明了我们的图像恢复,表示和分类技术的有效性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号