首页> 外文期刊>Knowledge-Based Systems >Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals
【24h】

Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals

机译:使用可调Q小波变换对心率信号进行自动诊断冠状动脉疾病

获取原文
获取原文并翻译 | 示例

摘要

Coronary artery disease (CAD) is the narrowing of coronary arteries leading to inadequate supply of nutrients and oxygen to the heart muscles. Over time, the condition can weaken the heart muscles and may lead to heart failure, arrhythmias and even sudden cardiac death. Hence, the early diagnosis of CAD can save life and prevent the risk of stroke. Electrocardiogram (ECG) depicts the state of the heart and can be used to detect the CAD. Small changes in the ECG signal indicate a particular disease. It is very difficult to decipher these minute changes in the ECG signal, as it is prone to artifacts and noise. Hence, we detect the R peaks from the ECG and use heart rate signals for our analysis. The manual inspection of the heart rate signals is time consuming, taxing and prone to errors due to fatigue. Hence, a decision support system independent of human intervention can yield accurate repeatable results. In this paper, we present a new method for diagnosis of CAD using tunable-Q wavelet transform (TQWT) based features extracted from heart rate signals. The heart rate signals are decomposed into various sub-bands using TQWF for better diagnostic feature extraction. The nonlinear feature called centered correntropy (CC) is computed on decomposed detail sub-band. Then the principal component analysis (PCA) is performed on these CC to transform the number of features. These clinically significant features are subjected to least squares support vector machine (LS-SVM) with different kernel functions for automated diagnosis. The experimental results demonstrate better classification accuracy, sensitivity, specificity and Matthews correlation coefficient using Morlet wavelet kernel function with optimized kernel and regularization parameters. Also, we have developed a novel CAD Risk index using significant features to discriminate the two classes using a single number. Our proposed methodology is more suitable in classification of normal and CAD heart rate signals and can aid the clinicians while screening the CAD patients. (C) 2015 Elsevier B.V. All rights reserved.
机译:冠状动脉疾病(CAD)是指冠状动脉狭窄,导致无法向心肌提供营养和氧气。随着时间的流逝,这种疾病会削弱心脏的肌肉,并可能导致心力衰竭,心律不齐,甚至猝死。因此,CAD的早期诊断可以挽救生命并预防中风的风险。心电图(ECG)描绘了心脏的状态,可用于检测CAD。 ECG信号的微小变化表明某种疾病。很难解读ECG信号中的这些微小变化,因为它容易产生伪影和噪声。因此,我们从心电图中检测到R峰,并使用心率信号进行分析。手动检查心率信号非常耗时,费力并且容易因疲劳而出错。因此,独立于人为干预的决策支持系统可以产生准确的可重复结果。在本文中,我们提出了一种基于从心率信号中提取的基于可调Q小波变换(TQWT)的特征来诊断CAD的新方法。使用TQWF将心率信号分解为各个子带,以更好地提取诊断特征。在分解的细节子带上计算称为中心熵(CC)的非线性特征。然后,在这些CC上执行主成分分析(PCA)以转换特征数量。这些具有临床意义的特征要经过具有不同内核功能的最小二乘支持向量机(LS-SVM)进行自动诊断。实验结果表明,采用Morlet小波核函数并具有优化的核和正则化参数,可以实现更好的分类准确性,灵敏度,特异性和Matthews相关系数。此外,我们还开发了一种新颖的CAD风险指数,该指数具有显着的功能,可使用一个数字来区分两个类别。我们提出的方法更适合于正常和CAD心率信号的分类,并且可以帮助临床医生筛查CAD患者。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号