首页> 外文期刊>Knowledge-Based Systems >Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal
【24h】

Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal

机译:使用心电图信号的轮廓波和剪切波变换自动表征冠状动脉疾病,心肌梗塞和充血性心力衰竭

获取原文
获取原文并翻译 | 示例

摘要

Undiagnosed coronary artery disease (CAD) progresses rapidly and leads to myocardial infarction (MI) by reducing the blood flow to the cardiac muscles. Timely diagnosis of MI and its location is significant, else, it expands and may impair the left ventricular (LV) function. Thus, if CAD and MI are not picked up by electrocardiogram (ECG) during diagnostic test, it can lead to congestive heart failure (CHF). Therefore, in this paper, the characterization of three cardiac abnormalities namely, CAD, MI and CHF are compared. Performance of novel algorithms is based on contourlet and shearlet transformations of the ECG signals. Continuous wavelet transform (CWT) is performed on normal, CAD, MI and CHF ECG beat to obtain scalograms. Subsequently, contourlet and shearlet transformations are applied on the scalograms to obtain the respective coefficients. Entropies, first and second order statistical features namely, mean (M-n(i)), min (M-in(i)), max (M-x(i)), standard deviation (D-st(i)), average power (P-avg(i)), inter-quartile range (IQR(i)), Shannon entropy (E-sh(i)), mean Tsallis entropy (E-mts(i)), kurtosis (K-ur(i)), mean absolute deviation (M-AD(i)), and mean energy (Omega(i)(m)), are extracted from each contourlet and shearlet coefficients. Only significant features are selected using improved binary particle swarm optimization (IBPSO) feature selection method. Selected features are ranked using analysis of variance (ANOVA) and relieff techniques. The highly ranked features are subjected to decision tree (DT) and K-nearest neighbor (KNN) classifiers. Proposed method has achieved accuracy, sensitivity and specificity of (i) 99.55%, 99.93% and 99.24% using contourlet transform, and (ii) 99.01%, 99.82% and 98.75% using shearlet transform. Among the two proposed techniques, contourlet transform method performed marginally better than shearlet transform technique in classifying the four classes. The proposed CWT combined with contourlet-based technique can be implemented in hospitals to speed up the diagnosis of three different cardiac abnormalities using a single ECG test. This technique, minimizes the unnecessary diagnostic tests required to confirm the diagnosis. (C) 2017 Elsevier B.V. All rights reserved.
机译:未诊断的冠状动脉疾病(CAD)进展迅速,并通过减少流向心肌的血液流量导致了心肌梗塞(MI)。及时诊断心肌梗死及其位置很重要,否则会扩大并可能损害左心室(LV)功能。因此,如果在诊断测试期间未通过心电图(ECG)采集CAD和MI,则可能导致充血性心力衰竭(CHF)。因此,本文比较了三种心脏异常的特征,即CAD,MI和CHF。新算法的性能基于ECG信号的轮廓波和剪切波变换。对正常,CAD,MI和CHF ECG搏动执行连续小波变换(CWT),以获得比例图。随后,将轮廓波和剪切波变换应用于比例尺图以获得相应的系数。熵,一阶和二阶统计特征,即均值(Mn(i)),最小值(M-in(i)),最大值(Mx(i)),标准差(D-st(i)),平均功率( P-avg(i)),四分位间距(IQR(i)),香农熵(E-sh(i)),平均Tsallis熵(E-mts(i)),峰度(K-ur(i) ),平均绝对偏差(M-AD(i))和平均能量(Omega(i)(m)),分别从每个轮廓波和剪切波系数中提取。使用改进的二进制粒子群优化(IBPSO)特征选择方法只能选择重要特征。使用方差分析(ANOVA)和救济技术对所选要素进行排名。排名较高的要素要经过决策树(DT)和K近邻(KNN)分类器。所提出的方法使用轮廓波变换实现了(i)99.55%,99.93%和99.24%的准确度,灵敏度和特异性,以及使用剪切波变换实现了(99.01%,99.82%和98.75%)的准确性,灵敏性和特异性。在这两种提出的技术中,在对这四个类别进行分类时,Contourlet变换方法的性能略好于Sletletlet变换技术。所提出的CWT与基于Contourlet的技术相结合,可以在医院中实施,以使用单个ECG测试加快对三种不同心脏异常的诊断。此技术可最大程度地减少确认诊断所需的不必要的诊断测试。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号