首页> 外文期刊>Knowledge-Based Systems >Predicting essential proteins based on RNA-Seq, subcellular localization and GO annotation datasets
【24h】

Predicting essential proteins based on RNA-Seq, subcellular localization and GO annotation datasets

机译:基于RNA-Seq,亚细胞定位和GO注释数据集预测必需蛋白

获取原文
获取原文并翻译 | 示例

摘要

Essential proteins are indispensable to cellular life. Identification of essential proteins plays a critical role in the survival and development of life process and understanding the function of cell machinery. The experimental methods are usually costly and time-consuming, in order to overcome these limitations, many computational methods have been proposed to discover essential proteins based on the topological features of PPI networks and other biological information. In this paper, a novel method named RSG is proposed to predict essential proteins based on RNA-Seq, subcellular localization and GO annotation datasets. First, the experiments show that the RNA-Seq data is more advantageous than traditional gene expression data in predicting essential proteins, meanwhile, the protein essentiality is closely related to the subcellular localization information and protein GO terms through data analysis. A new weighted PPI network is constructed, which integrates the GO terms information with Pearson correlation coefficient of RNA-Seq data. Then, the weighted edge clustering coefficient is developed to measure the connectivity of protein nodes. RSG determines the essentiality based on not only the subcellular localization information but also the co-expressed level and functional similarity characterized by RNA-Seq and GO annotation data. The experimental results on two species (Saccharomyces cerevisiae and Drosophila melanogaster), the performance of RSG was compared with other centrality methods, the results show that RSG has a better performance in predicting essential proteins. (C) 2018 Elsevier B.V. All rights reserved.
机译:必需蛋白是细胞生命必不可少的。必需蛋白的鉴定在生命过程的存活和发展以及了解细胞机制的功能中起着至关重要的作用。实验方法通常是昂贵且费时的,为了克服这些限制,已经提出了许多计算方法来基于PPI网络的拓扑特征和其他生物学信息来发现必需蛋白质。在本文中,基于RNA-Seq,亚细胞定位和GO注释数据集,提出了一种新的名为RSG的方法来预测必需蛋白。首先,实验表明,RNA-Seq数据在预测必需蛋白方面比传统基因表达数据更具优势,同时,通过数据分析,蛋白必需性与亚细胞定位信息和蛋白GO术语密切相关。构建了一个新的加权PPI网络,该网络将GO项信息与RNA-Seq数据的Pearson相关系数集成在一起。然后,开发加权边缘聚类系数以测量蛋白质节点的连通性。 RSG不仅根据亚细胞定位信息,而且还根据以RNA-Seq和GO注释数据为特征的共表达水平和功能相似性来确定必要性。对两种酿酒酵母和果蝇果蝇的实验结果,将RSG的性能与其他集中化方法进行了比较,结果表明RSG在预测必需蛋白方面具有更好的性能。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号