首页> 外文期刊>Knowledge-Based Systems >A three learning states Bayesian knowledge tracing model
【24h】

A three learning states Bayesian knowledge tracing model

机译:三学习状态贝叶斯知识溯源模型

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a Bayesian knowledge tracing model with three learning states by extending the original two learning states. We divide a learning process into three sections by using an evaluation function for three-way decisions. Advantages of such a trisection over traditional bisection are demonstrated by comparative experiments. We develop a three learning states model based on the trisection of the learning process. We apply the model to a series of comparative experiments with the original model. Qualitative and quantitative analyses of the experimental results indicate the superior performance of the proposed model over the original model in terms of prediction accuracies and related statistical measures. (C) 2018 Elsevier B.V. All rights reserved.
机译:通过扩展原始的两个学习状态,提出了具有三个学习状态的贝叶斯知识跟踪模型。我们使用评估函数进行三向决策,将学习过程分为三个部分。通过比较实验证明了这种三分法相对于传统二分法的优势。我们基于学习过程的三部分开发了三个学习状态模型。我们将该模型应用于与原始模型的一系列比较实验。实验结果的定性和定量分析表明,在预测准确度和相关的统计指标方面,所提出的模型优于原始模型。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号