首页> 外文期刊>User modeling and user-adapted interaction >Bayesian knowledge tracing, logistic models, and beyond: an overview of learner modeling techniques
【24h】

Bayesian knowledge tracing, logistic models, and beyond: an overview of learner modeling techniques

机译:贝叶斯知识追踪,物流模型及其他:学习者建模技术概述

获取原文
获取原文并翻译 | 示例

摘要

Learner modeling is a basis of personalized, adaptive learning. The research literature provides a wide range of modeling approaches, but it does not provide guidance for choosing a model suitable for a particular situation. We provide a systematic and up-to-date overview of current approaches to tracing learners’ knowledge and skill across interaction with multiple items, focusing in particular on the widely used Bayesian knowledge tracing and logistic models. We discuss factors that influence the choice of a model and highlight the importance of the learner modeling context: models are used for different purposes and deal with different types of learning processes. We also consider methodological issues in the evaluation of learner models and their relation to the modeling context. Overall, the overview provides basic guidelines for both researchers and practitioners and identifies areas that require further clarification in future research.
机译:学习者建模是个性化自适应学习的基础。研究文献提供了广泛的建模方法,但没有为选择适合特定情况的模型提供指导。我们提供了有关跨多个项目交互来跟踪学习者的知识和技能的当前方法的系统且最新的概述,尤其着重于广泛使用的贝叶斯知识跟踪和后勤模型。我们讨论了影响模型选择的因素,并强调了学习者建模上下文的重要性:模型用于不同的目的并处理不同类型的学习过程。我们还在评估学习者模型及其与建模环境的关系时考虑方法论问题。总体而言,概述为研究人员和从业人员提供了基本指南,并确定了需要在未来研究中进一步阐明的领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号