首页> 外文期刊>Journal of Zhejiang University. Science >A novel method for mobile robot simultaneous localization and mapping
【24h】

A novel method for mobile robot simultaneous localization and mapping

机译:移动机器人同时定位与映射的新方法

获取原文
获取原文并翻译 | 示例

摘要

A novel mobile robot simultaneous localization and mapping (SLAM) method is implemented by using the Rao-Blackwellized particle filter (RBPF) for monocular vision-based autonomous robot in unknown indoor environment. The particle filter combined with unscented Kalman filter (UKF) for extending the path posterior by sampling new poses integrating the current observation. Landmark position estimation and update is implemented through UKF. Furthermore, the number of resampling steps is determined adaptively, which greatly reduces the particle depletion problem. Monocular CCD camera mounted on the robot tracks the 3D natural point landmarks structured with matching image feature pairs extracted through Scale Invariant Feature Transform (SIFT). The matching for multi-dimension SIFT features which are highly distinctive due to a special descriptor is implemented with a KD-Tree. Experiments on the robot Pioneer3 showed that our method is very precise and stable.
机译:针对未知室内环境中基于单眼视觉的自主机器人,利用Rao-Blackwellized粒子滤波(RBPF)实现了一种新颖的移动机器人同时定位与制图(SLAM)方法。粒子滤波器与无味卡尔曼滤波器(UKF)结合使用,通过对结合当前观测值的新姿态进行采样来扩展后路。具有里程碑意义的位置估计和更新是通过UKF实施的。此外,自适应地确定重采样步骤的数量,这大大减少了颗粒耗竭问题。安装在机器人上的单眼CCD摄像机可跟踪3D自然点地标,该地标由通过比例不变特征变换(SIFT)提取的匹配图像特征对构成。通过特殊的描述符,对高度独特的多维SIFT特征进行匹配是通过KD-Tree实现的。在机器人Pioneer3上进行的实验表明,我们的方法非常精确且稳定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号