首页> 外文期刊>Journal of Visual Languages & Computing >Data-driven human model estimation for realtime motion capture
【24h】

Data-driven human model estimation for realtime motion capture

机译:数据驱动的人体模型估计,用于实时运动捕捉

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a practicable method to estimate individual 3D human model in a low cost multi-view realtime 3D human motion capture system. The key idea is: using human geometric model database and human motion database to establish geometric priors and pose prior model; when given the geometric prior, pose prior and a standard template geometry model, the individual human body model and its embedded skeleton can be estimated from the 3D point cloud captured from multiple depth cameras. Because of the introduction of the global prior model of body pose and shapes into a unified nonlinear optimization problem, the accuracy of geometric model estimation is significantly improved. The experiments on the synthesized data set with noise or without noise and the real data set captured from multiple depth cameras show that the estimation results of our method are more reasonable and accurate than the classical methods, and our method is better noise-immunity. The proposed new individual 3D geometric model estimation method is suitable for online realtime human motion tracking system.
机译:在本文中,我们提出了一种可行的方法来估计低成本多视图实时3D人体运动捕捉系统中的单个3D人体模型。关键思想是:利用人体几何模型数据库和人体运动数据库建立几何先验并构成先验模型;当给定几何先验,姿势先验和标准模板几何模型时,可以从多个深度相机捕获的3D点云中估算单个人体模型及其嵌入的骨架。由于将人体姿势和形状的全局先验模型引入了统一的非线性优化问题,因此大大提高了几何模型估计的准确性。对有噪声或无噪声的合成数据集以及从多台深度相机捕获的真实数据集进行的实验表明,该方法的估计结果比经典方法更合理,更准确,并且抗噪性更好。所提出的新的个体3D几何模型估计方法适用于在线实时人类运动跟踪系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号