首页> 外文期刊>Journal of visual communication & image representation >Noise robust image matching using adjacent evaluation census transform and wavelet edge joint bilateral filter in stereo vision
【24h】

Noise robust image matching using adjacent evaluation census transform and wavelet edge joint bilateral filter in stereo vision

机译:立体视觉中使用邻近评估普查变换和小波边缘联合双边滤波器的噪声鲁棒图像匹配

获取原文
获取原文并翻译 | 示例

摘要

Automation application systems based on stereo vision require robust image matching methods to achieve available depth image information. This paper presents a novel noise robust stereo matching using adjacent evaluation census transform and wavelet edge joint bilateral filter. The adjacent evaluation census is firstly proposed to improve the robustness against noise of the census transform. Meanwhile, two different and complementary types of metrics are extracted (the adjacent evaluation census mean and the adjacent evaluation census weighted difference). Moreover, the weighted template is composed of four different directions. Then, to improve the robustness of cost aggregation and disparity optimization, the random walk is integrated into the proposed stereo matching method. Additionally, a disparity map post-processing method named wavelet edge joint bilateral filter is employed to eliminate error regions. An obtained wavelet-based edge image is considered as an important weighted coefficient to guide the post-processing. Experimental results demonstrate that the proposed method presents the best performance of the robustness against noise on the Middlebury dataset. Even in the toughest situation with additive Gaussian noise, our method can still achieve the moderate disparity map. In addition, the wider applicability of the proposed method is demonstrated on the KITTI (i.e., Karlsruhe Institute of Technology (KIT) and Toyota Technological Institute at Chicago (TTI-C)) dataset and some typical real-world sequences. (C) 2016 Elsevier Inc. All rights reserved.
机译:基于立体视觉的自动化应用系统需要强大的图像匹配方法来获得可用的深度图像信息。本文提出了一种新的噪声鲁棒立体声匹配方法,该方法使用相邻的评估普查变换和小波边缘联合双边滤波器。首先提出了相邻评估普查,以提高普查变换对噪声的鲁棒性。同时,提取两种不同且互补的度量标准(相邻评估普查平均值和相邻评估普查加权差)。此外,加权模板由四个不同方向组成。然后,为了提高成本汇总和视差优化的鲁棒性,将随机游走集成到了所提出的立体声匹配方法中。另外,采用了一种称为小波边缘联合双边滤波器的视差图后处理方法来消除误差区域。获得的基于小波的边缘图像被认为是指导后处理的重要加权系数。实验结果表明,该方法在Middlebury数据集上表现出了最佳的抗噪声鲁棒性。即使在最加重高斯噪声的最困难情况下,我们的方法仍然可以实现中等视差图。此外,在KITTI(即卡尔斯鲁厄技术学院(KIT)和芝加哥丰田技术学院(TTI-C))数据集和一些典型的现实世界序列中证明了该方法的广泛适用性。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号