首页> 外文期刊>Journal of visual communication & image representation >Semi-supervised cross-modal representation learning with GAN-based Asymmetric Transfer Network
【24h】

Semi-supervised cross-modal representation learning with GAN-based Asymmetric Transfer Network

机译:基于GAN的非对称转移网络的半监督跨模型表示学习

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we proposed a semi-supervised common representation learning method with GAN-based Asymmetric Transfer Network (GATN) for cross modality retrieval. GATN utilizes the asymmetric pipeline to guarantee the semantic consistency and adopt (Generative Adversarial Network) GAN to fit the distributions of different modalities. Specifically, the common representation learning across modalities includes two stages: (1) the first stage, GATN trains source mapping network to learn the semantic representation of text modality by supervised method; and (2) the second stage, GAN-based unsupervised modality transfer method is proposed to guide the training of target mapping network, which includes generative network (target mapping network) and discriminative network. Experimental results on three widely-used benchmarks show that GATN have achieved better performance comparing with several existing state-of-the-art methods.
机译:在本文中,我们提出了一种具有GaN的非对称转移网络(GATN)的半监督的共同表示学习方法,用于交叉模态检索。 GATN利用不对称的管道来保证语义一致性,采用(生成的对抗网络)GAN来符合不同方式的分布。具体而言,跨模式的常见表示学习包括两个阶段:(1)第一阶段,GATN列车源映射网络通过监督方法学习文本模型的语义表示; (2)第二阶段,提出了基于GaN的无监督模式传递方法,指导目标映射网络的训练,包括生成网络(目标映射网络)和鉴别网络。三种广泛使用的基准测试结果表明,与现有最先进的方法相比,GATN实现了更好的性能。

著录项

  • 来源
    《Journal of visual communication & image representation》 |2020年第11期|102899.1-102899.9|共9页
  • 作者单位

    Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu Peoples R China|Univ Elect Sci & Technol China Digital Media Technol Key Lab Sichuan Prov Chengdu Peoples R China;

    Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu Peoples R China|Univ Elect Sci & Technol China Digital Media Technol Key Lab Sichuan Prov Chengdu Peoples R China|Inst Elect & Informat Engn UESTC Guangdong Dongguan Peoples R China;

    Guizhou Normal Univ Sch Big Data & Comp Sci Guiyang Peoples R China;

    Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu Peoples R China|Univ Elect Sci & Technol China Digital Media Technol Key Lab Sichuan Prov Chengdu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cross-modal retrieval; Modality gap; Generative adversarial network;

    机译:交叉模态检索;模态差距;生成的对抗网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号