首页> 外文期刊>Pattern recognition letters >Semi-supervised cross-modal common representation learning with vector-valued manifold regularization
【24h】

Semi-supervised cross-modal common representation learning with vector-valued manifold regularization

机译:向量值流形正则化的半监督交叉模态共同表示学习

获取原文
获取原文并翻译 | 示例

摘要

While cross-media data, like text, image, audio, video and 3D model, has been the main form of big data, there is a current dearth of research on cross-media retrieval. In this paper, we focus on how to learn the common representation of heterogeneous data which is a key challenge for cross-media retrieval. Most existing approaches linearly project original low-level feature into a joint feature space for isomorphic data representation. However, linear projection cannot capture most complex cross-modal correlation with high nonlinearity. In this paper, we propose a novel feature learning algorithm, which is semi-supervised cross-modal vector-valued manifold regularization (SCVM), to explore common representation of heterogeneous data. SCVM jointly explores low-level feature correlation and semantic information in a unified framework. Based on manifold regularization, we learn cross-media features from vector-valued reproducing kernel Hilbert spaces (RKHS) by kernel transformation on both labeled and unlabeled samples; moreover, we impose smoothness constraints of possible solutions to improve retrieval accuracy. Comparing with the current state-of-the-art approaches on two public datasets, comprehensive experimental results show superior performance of our SCVM. The method is more robust and stable when extended from two media types to five media types, which is very attractive in practical application. (C) 2019 Published by Elsevier B.V.
机译:尽管跨媒体数据(例如文本,图像,音频,视频和3D模型)一直是大数据的主要形式,但目前对跨媒体检索的研究还很匮乏。在本文中,我们专注于如何学习异构数据的通用表示形式,这是跨媒体检索的关键挑战。大多数现有方法将原始低层特征线性投影到联合特征空间中,以表示同构数据。但是,线性投影无法捕获具有高度非线性的最复杂的交叉模态相关性。在本文中,我们提出了一种新颖的特征学习算法,即半监督跨模态矢量值流形正则化(SCVM),以探索异构数据的通用表示形式。 SCVM在一个统一的框架中共同探索低级特征相关性和语义信息。基于流形正则化,我们通过对有标记和无标记样本进行内核变换,从矢量值再现内核希尔伯特空间(RKHS)中学习跨媒体特征;此外,我们对可能的解决方案施加了平滑度约束,以提高检索精度。与两个公共数据集上的最新技术相比,全面的实验结果显示了我们SCVM的卓越性能。当从两种媒体类型扩展到五种媒体类型时,该方法更加健壮和稳定,这在实际应用中非常有吸引力。 (C)2019由Elsevier B.V.发布

著录项

  • 来源
    《Pattern recognition letters》 |2020年第2期|335-344|共10页
  • 作者

  • 作者单位

    Wuhan Univ Sci & Technol Coll Comp Sci & Technol Wuhan 430065 Peoples R China|Hubei Prov Key Lab Intelligent Informat Proc & Re Wuhan 430065 Peoples R China;

    Wuhan Univ Sci & Technol Coll Comp Sci & Technol Wuhan 430065 Peoples R China|Wuhan Business Univ Lib Wuhan 430056 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cross-media retrieval; Vector-valued RKHS; Manifold regularization; Semi-supervised; Kernel method;

    机译:跨媒体检索;向量值RKHS;歧管正则化;半监督;内核方法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号