首页> 外文期刊>Journal of visual communication & image representation >Online multi-object tracking combining optical flow and compressive tracking in Markov decision process
【24h】

Online multi-object tracking combining optical flow and compressive tracking in Markov decision process

机译:马尔可夫决策过程中结合光流和压缩跟踪的在线多目标跟踪

获取原文
获取原文并翻译 | 示例

摘要

Effective features are important for visual tracking, and efficiency also needs to be considered especially for multi-object tracking. Thanks to the simplicity, we think compressive sensing features are suitable for this task. In this paper, we use compressive sensing features to improve the Markov decision process (MDP) multi-object tracking framework. First, we design a single object tracker which uses the compressive tracking to correct the optical flow tracking and apply this tracker into the MDP tracking framework. The appearance model constructed during compressive tracking also helps for data association. In order to validate our method, we firstly test the designed single object tracker with a common dataset. Then, we test our multi-object tracking method for vehicle tracking. Finally, we analyze and test our approach in the multi-object tracking (MOT) benchmark for pedestrian tracking. The results show our approach performs superiorly against several state-of-the-art online multi-object trackers. (C) 2018 Elsevier Inc. All rights reserved.
机译:有效功能对于视觉跟踪很重要,并且效率(尤其对于多对象跟踪)也需要考虑效率。由于简单,我们认为压缩感测功能适合此任务。在本文中,我们使用压缩感测功能来改进马尔可夫决策过程(MDP)多对象跟踪框架。首先,我们设计一个单一的对象跟踪器,该对象跟踪器使用压缩跟踪来校正光流跟踪,并将此跟踪器应用于MDP跟踪框架。在压缩跟踪过程中构造的外观模型也有助于数据关联。为了验证我们的方法,我们首先使用通用数据集测试设计的单对象跟踪器。然后,我们测试了用于车辆跟踪的多目标跟踪方法。最后,我们在用于行人跟踪的多对象跟踪(MOT)基准中分析和测试了我们的方法。结果表明,我们的方法与几种最新的在线多对象跟踪器相比具有优越的性能。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号