首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Configurational stability of a crack propagating in a material with mode-dependent fracture energy - Part Ⅰ: Mixed-mode Ⅰ+Ⅲ
【24h】

Configurational stability of a crack propagating in a material with mode-dependent fracture energy - Part Ⅰ: Mixed-mode Ⅰ+Ⅲ

机译:取决于模式的断裂能在材料中扩展的裂纹的结构稳定性-第一部分:混合模式Ⅰ+Ⅲ

获取原文
获取原文并翻译 | 示例

摘要

In a previous paper (Leblond et al., 2011), we proposed a theoretical interpretation of the experimentally well-known instability of coplanar crack propagation in mode I+III. The interpretation relied on a stability analysis based on analytical expressions of the stress intensity factors for a crack slightly perturbed both within and out of its original plane, due to Gao and Rice (1986) and Movchan et al. (1998), coupled with a double propagation criterion combining Griffith (1920)'s energetic condition and Goldstein and Salganik (1974)'s principle of local symmetry. Under such assumptions instability modes were indeed evidenced for values of the mode mixity ratio - ratio of the mode III to mode I stress intensity factors applied remotely - larger than some threshold depending only on Poisson's ratio. Unfortunately, the predicted thresholds were much larger than those generally observed for typical values of this material parameter. While the subcritical character of the nonlinear bifurcation from coplanar to fragmented fronts has been proposed as a possible explanation for this discrepancy (Chen et al., 2015), we propose here an alternative explanation based on the introduction of a constitutive relationship between the fracture energy and the mode mixity ratio, which is motivated by experimental observations. By re-examining the linear stability analysis of a planar propagating front, we show that such a relationship suffices, provided that it is strong enough, to lower significantly the threshold value of the mode mixity ratio for instability so as to bring it in a range more consistent with experiments. Interesting formulae are also derived for the distributions of the perturbed stress intensity factors and energy-release-rate, in the special case of perturbations of the crack surface and front obeying the principle of local symmetry and having reached a stationary state (corresponding to instability modes in near-threshold conditions). (C) 2019 Elsevier Ltd. All rights reserved.
机译:在先前的论文(Leblond等,2011)中,我们提出了在模式I + III中实验上众所周知的共面裂纹扩展不稳定性的理论解释。由于高和莱斯(1986)和莫夫尚(Movchan)等人的解释,这种解释依赖于基于应力强度因子的解析表达式的稳定性分析,该表达式在裂纹的原始平面内外都略有扰动。 (1998),再加上结合格里菲斯(1920)的高能条件和戈德斯坦和萨尔格尼克(1974)的局部对称原理的双重传播准则。在这样的假设下,对于模式混合比的值确实可以证明是不稳定的模式-远程应用的模式III与模式I的应力强度因子之比-大于某个阈值,仅取决于泊松比。不幸的是,预测的阈值比对于该材料参数的典型值通常观察到的阈值大得多。虽然有人提出了从共面到破碎前沿的非线性分叉的亚临界特征来解释这种差异(Chen et al。,2015),但我们在此基于断裂能之间的本构关系的引入提出了另一种解释。和模式混合比,这是由实验观察得出的。通过重新检查平面传播前沿的线性稳定性分析,我们表明,只要这种关系足够强,就足以显着降低不稳定性众数混合比的阈值,从而使其处于一定范围内,则该关系就足够了。与实验更加一致。还得出了有趣的公式,用于计算应力强度因子和能量释放率的分布,在特殊情况下,裂纹表面和前沿的扰动遵循局部对称原理并达到稳态(对应于失稳模式)在接近阈值的条件下)。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Journal of the Mechanics and Physics of Solids》 |2019年第5期|187-203|共17页
  • 作者单位

    Sorbonne Univ, Fac Sci & Ingn, CNRS, UMR 7190,Inst Jean Le Rond dAlembert, Campus Pierre & Marie Curie, F-75005 Paris, France;

    Northeastern Univ, Phys Dept, Boston, MA 02115 USA|Northeastern Univ, Ctr Interdisciplinary Res Complex Syst, Boston, MA 02115 USA;

    Sorbonne Univ, Fac Sci & Ingn, CNRS, UMR 7190,Inst Jean Le Rond dAlembert, Campus Pierre & Marie Curie, F-75005 Paris, France;

    Sorbonne Univ, Fac Sci & Ingn, CNRS, UMR 7190,Inst Jean Le Rond dAlembert, Campus Pierre & Marie Curie, F-75005 Paris, France|Northeastern Univ, Phys Dept, Boston, MA 02115 USA|Northeastern Univ, Ctr Interdisciplinary Res Complex Syst, Boston, MA 02115 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Configurational stability; Mode I plus III; Mode-dependent fracture energy; Griffith's criterion; Principle of local symmetry;

    机译:构型稳定性;I + III模式;与模式有关的断裂能;Griffith准则;局部对称原理;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号