首页> 外文期刊>Journal of the Mechanics and Physics of Solids >EXACT SECOND-ORDER ESTIMATES FOR THE EFFECTIVE MECHANICAL PROPERTIES OF NONLINEAR COMPOSITE MATERIALS
【24h】

EXACT SECOND-ORDER ESTIMATES FOR THE EFFECTIVE MECHANICAL PROPERTIES OF NONLINEAR COMPOSITE MATERIALS

机译:非线性复合材料有效力学性能的精确二阶估计

获取原文
获取原文并翻译 | 示例

摘要

Motivated by previous small-contrast perturbation estimates, this paper proposes a new method for estimating the effective behavior of nonlinear composite materials with arbitrary phase contrast. The key idea is to write down a second-order Taylor expansion for the phase potentials, about appropriately defined phase average strains. The resulting estimates, which are exact to second order in the contrast, involve the ''tangent'' modulus tensors of the nonlinear phase potentials, and reduce the problem for the nonlinear composite to a linear problem for an anisotropic thermoelastic composite. Making use of a well-known result by Levin for two-phase thermoelastic composites, together with estimates of the Hashin-Shtrikman type for linear elastic composites, explicit results are generated for two-phase nonlinear composites with statistically isotropic particulate microstructures. Like the earlier small-contrast asymptotic results, the new estimates are found to depend on the determinant of the strain, but unlike the small-contrast results that diverge for shear loading conditions in the nonhardening limit, the new estimates remain bounded and reduce to the classical lower bound in this limiting case. The general method is applied to composites with power-law constitutive behavior and the results are compared with available bounds and numerical estimates, as well as with other nonlinear homogenization procedures. For the cases considered, the new estimates are found to satisfy the restrictions imposed by the bounds, to improve on the predictions of prior homogenization procedures and to be in excellent agreement with the results of the numerical simulations. Copyright (C) 1996 Elsevier Science Ltd [References: 54]
机译:基于先前的小对比度扰动估计,本文提出了一种新的方法来估计具有任意相衬的非线性复合材料的有效行为。关键思想是写下相电势的二阶泰勒展开式,关于适当定义的相平均应变。所得结果的估计值恰好相反于二阶,涉及非线性相电势的“正切”模量张量,并将非线性复合物的问题简化为各向异性热弹性复合物的线性问题。利用莱文对两相热弹性复合材料的著名结果,以及对线性弹性复合材料的Hashin-Shtrikman类型的估计,可以得出具有统计各向同性颗粒微观结构的两相非线性复合材料的显式结果。像早期的小对比渐近结果一样,新的估计值也取决于应变的决定因素,但是与小对比结果在非硬化极限中的剪力条件不同的情况不同,新的估计值仍然有界并减小到在这种极限情况下的经典下界。将通用方法应用于具有幂律本构关系的复合材料,并将结果与​​可用边界和数值估计以及其他非线性均质化程序进行比较。对于所考虑的情况,发现新的估计值可以满足边界所施加的限制,从而可以改进先前的均质化程序的预测,并且与数值模拟的结果非常一致。版权所有(C)1996 Elsevier Science Ltd [引用:54]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号