首页> 外文期刊>Journal of symbolic computation >Computing strong regular characteristic pairs with Groebner bases
【24h】

Computing strong regular characteristic pairs with Groebner bases

机译:使用Groebner基础计算强常规特征对

获取原文
获取原文并翻译 | 示例

摘要

The W-characteristic set of a polynomial ideal is the minimal triangular set contained in the reduced lexicographical Grobner basis of the ideal. A pair (G, C) of polynomial sets is a strong regular characteristic pair if G is a reduced lexicographical Grobner basis, C is the W-characteristic set of the ideal G , the saturated ideal sat(C) of C is equal to G , and C is regular. In this paper, we show that for any polynomial ideal I with given generators one can either detect that I is unit, or construct a strong regular characteristic pair (G, C) by computing Grobner bases such that I subset of sat(C) = G and sat(C) divides I, so the ideal I can be split into the saturated ideal sat(C) and the quotient ideal I : sat(C). Based on this strategy of splitting by means of quotient and with Grobner basis and ideal computations, we devise a simple algorithm to decompose an arbitrary polynomial set F into finitely many strong regular characteristic pairs, from which two representations for the zeros of F are obtained: one in terms of strong regular Grobner bases and the other in terms of regular triangular sets. We present some properties about strong regular characteristic pairs and characteristic decomposition and illustrate the proposed algorithm and its performance by examples and experimental results. (C) 2020 Elsevier Ltd. All rights reserved.
机译:多项式理想的W-特征集是最小的三角形集合,其具有理想的简称grobner基础。多项式组的一对(g,c)是一种强度常规特征对,如果g是减少的词典grobner基础,则C是理想的W-特征集,C的饱和理想饱和(c)是相等的到,c是常规的。在本文中,我们表明,对于带有给定发电机的任何多项式理想I可以通过计算Grobner基础,以检测我是单元,或者通过计算Grobner基础构造强常规特征对(g,c),使得我的sat(c)= 和sat(c)划分i,因此理想的我可以分成饱和理想的sat(c)和商品理想i:sat(c)。基于这种策略通过商品和Grebner基础分裂和理想的计算,我们设计了一种简单的算法,将任意多项式组F分解为有义的许多强常规特征对,从中获得了F的两个表示的两个表示:一个方面是强大的常规Grobner基地,另一个在普通三角套方面。我们展示了关于强常规特征对和特征分解的一些性质,并通过示例和实验结果说明了所提出的算法及其性能。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号