首页> 外文会议>11th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2009) >Computing Self-intersection Loci of Parametrized Surfaces Using Regular Systems and Groebner Bases
【24h】

Computing Self-intersection Loci of Parametrized Surfaces Using Regular Systems and Groebner Bases

机译:使用常规系统和Groebner基计算参数化曲面的自相交轨迹

获取原文
获取原文并翻译 | 示例

摘要

The computation of self-intersection loci of parametrized surfaces is needed for constructing trimmed parametrizations and describing the topology of the considered surfaces in real settings. This paper presents two general and efficient methods for determining self-intersection loci of rationally parametrized surfaces. One of the methods, based on regular systems, is capable of computing the exact parametric locus of self-intersection of a given surface and the other, based on Groebner bases, can compute the minimal variety passing through the exact parametric locus. The relation between the results computed by the two methods is established and two algorithms for computing parametric loci of self-intersection are described. Experimental results and comparisons with some existing methods show that our algorithms have a good performance for parametrized surfaces.
机译:为了构造修整的参数化并描述实际设置中考虑的曲面的拓扑,需要对参数化曲面的自相交位点进行计算。本文介绍了两种用于确定合理参数化曲面的自交点的通用有效方法。一种基于常规系统的方法能够计算给定表面的自相交的精确参数轨迹,而另一种基于Groebner基的方法可以计算经过精确参数轨迹的最小变化量。建立了两种方法计算结果之间的关系,并描述了两种计算自相交的参数位点的算法。实验结果和与某些现有方法的比较表明,我们的算法对于参数化曲面具有良好的性能。

著录项

  • 来源
  • 会议地点 Timisoara(RO);Timisoara(RO)
  • 作者

    Huang Yanli; Wang Dongming;

  • 作者单位

    Issue Date: 26-29 Sept. 2009rnrntOn page(s): rnt28rnttrn- 36rnrnrnLocation: Timisoara, RomaniarnrnPrint ISBN: 978-1-4244-5910-0rnrnrnrnttrnDigital Object Identifier: href='http://dx.doi.org/10.1109/SYNASC.2009.43' target='_blank'>10.1109/SYNASC.2009.43 rnrnDate of Current Version: trnrnt2010-05-06 14:34:01.0rnrnt rntt class="body-text">rntname="Abstract">>Abstractrn>The computation of self-intersection loci of parametrized surfaces is needed for constructing trimmed parametrizations and describing the topology of the considered surfaces in real settings. This paper presents two general and efficient methods for determining self-intersection loci of rationally parametrized surfaces. One of the methods, based on regular systems,;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 计算复杂性理论;
  • 关键词

    minimal variety; parametric locus; parametrized surface; self-intersection locus;

    机译:最小变化;参数轨迹;参数化表面;自相交轨迹;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号