首页> 外文期刊>urnal of Symbolic Computation >Skew polynomial rings, Groebner bases and the letterplace embedding of the free associative algebra
【24h】

Skew polynomial rings, Groebner bases and the letterplace embedding of the free associative algebra

机译:偏多项式环,Groebner基和自由缔合代数的字母嵌入

获取原文
获取原文并翻译 | 示例

摘要

In this paper we introduce an algebra embedding ι:K(X) → S from the free associative algebra K(X) generated by a finite or countable set X into the skew monoid ring S = P * ∑ defined by the commutative polynomial ring P = K[X × N~*] and by the monoid ∑ = (σ) generated by a suitable endomorphism σ :P →P. If P = K[X] is any ring of polynomials in a countable set of commuting variables, we present also a general Grobner bases theory for graded two-sided ideals of the graded algebra S = ⊕_i S_i with S_i = Pσ~i and σ :P→ P an abstract endomorphism satisfying compatibility conditions with ordering and divisibility of the monomials of P. Moreover, using a suitable grading for the algebra P compatible with the action of E, we obtain a bijective correspondence, preserving Grobner bases, between graded 27-invariant ideals of P and a class of graded two-sided ideals of S. By means of the embedding ι this results in the unification, in the graded case, of the Grobner bases theories for commutative and non-commutative polynomial rings. Finally, since the ring of ordinary difference polynomials P = K[X x N] fits the proposed theory one obtains that, with respect to a suitable grading, the Grobner bases of finitely generated graded ordinary difference ideals can be computed also in the operators ring S and in a finite number of steps up to some fixed degree.
机译:在本文中,我们将由有限或可数集合X生成的自由缔合代数K(X)引入由交换多项式环P定义的偏斜单等式环S = P * ∑的代数嵌入η:K(X)→S = K [X×N〜*]并由合适的内同构σ:P→P产生的等式∑ =(σ)。如果P = K [X]是可转换的可交换变量集中的多项式的任何环,我们还给出了梯度代数S =⊕_iS_i且S_i =Pσ〜i和的代数两侧理想的一般Grobner基理论。 σ:P→P是满足相容性条件且具有P的单项式的有序性和可除性的抽象内同构。此外,对与E的作用兼容的代数P使用合适的分级,我们获得了双射对应,在分级之间保留了Grobner基P的27个不变理想和S的一类渐变的两边理想。通过嵌入ι,在渐变的情况下,这导致了交换和非交换多项式环的Grobner基理论的统一。最后,由于常微分多项式的环P = K [X x N]符合所提出的理论,因此可以得出,对于合适的分等,也可以在算子环中计算有限生成的分阶常微理想的Grobner基。 S并以有限的步数达到一定的固定程度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号