首页> 外文期刊>Journal of supercomputing >Dual-drive opposition-based non-inertial particle swarm optimization for deep learning in IoTs
【24h】

Dual-drive opposition-based non-inertial particle swarm optimization for deep learning in IoTs

机译:基于反对的非惯性粒子群优化因子IOTS深度学习

获取原文
获取原文并翻译 | 示例

摘要

Since the particle swarm optimization (PSO) was proposed to overcome the inherent defects of PSO such as premature convergence and dependent on parameters settings, different PSO variants are devised to optimize different complex optimization problems; NOPSO is an excellent representative among them. This paper ensembles the three types of velocity update formulas proposed in NOPSO and presents a dual-drive opposition-based non-inertial PSO to improve the robustness of algorithm while ensuring the searching efficiency and solving accuracy of optimization procedure. Two main strategies are introduced in the new algorithm: (1) a dual-drive velocity update formula (DDVM) is proposed to control move of particles and (2) an elite differential evolutionary mutation strategy (EDEM) is devised to help particles escape from local optimum. The modified algorithm with two above strategies is proved to be competitive compared with some state-of-the-art OBL-based PSO including NOPSO and can be effectively applied to deep learning in IoTs in the foreseeable future.
机译:由于粒子群优化(PSO),提出了克服PSO的如过早收敛和依赖于参数设置的固有缺陷,不同PSO变体被设计以优化不同复杂的优化问题; NOPSO就是其中的优秀代表。本文歌舞团三类NOPSO提出的速度更新公式,提出了一种基于反对派双驱动非惯性系PSO,提高算法的鲁棒性,同时保证了搜索效率,解决优化过程中的准确性。两个主要策略是在新的算法介绍:(1)一个双驱动速度更新式(DDVM)提出了颗粒的控制移动和(2)一个精英微分进化突变策略(EDEM)被设计为帮助颗粒逸出局部最优。修改后的算法有两个以上的策略证明与一些基于OBL状态的最先进的PSO包括NOPSO,并且可以在可预见的未来有效地应用到深度学习在IOTS相比具有竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号