首页> 外文期刊>Journal of supercomputing >Effective large for gestational age prediction using machine learning techniques with monitoring biochemical indicators
【24h】

Effective large for gestational age prediction using machine learning techniques with monitoring biochemical indicators

机译:使用具有监测生化指标的机器学习技术对妊娠期预测有效预测

获取原文
获取原文并翻译 | 示例

摘要

A newborn with a birth weight above the 90th percentile of same gestational age is termed as large for gestational age. Large for gestational age suffers from serious complications during and after the antepartum period because they do not get earlier identification of the disease. Earlier recognition of large for gestational age infants could slow progression and prevent further complication of the disease. In medical science, prevention and mitigation of disease require examination of biochemical indicators. Machine learning has been evolved and envisioned as a tool to predict large for gestational age infants with most deterministic characteristics. This study aims to identify most deterministic biochemical indicators for large for gestational age prediction with minimal computational overhead. To the best of my knowledge, this is the first time a study is carried out to identify the most deterministic risk factors associated with large for gestational age and to develop large for gestational age prediction model using machine learning techniques. To develop an efficient large for gestational age prediction model, we conducted three group of experiments that considered basic machine learning methods; feature selection; and imbalanced data, respectively. Support vector machine, logistic regression, Naive Bayes and Random Forest were trained using tenfold cross-validation on large for gestational age dataset; we selected precision and area under the curve as a performance evaluation metrics; information gain an entropy-based feature selection method was adopted to rank features; we introduced an ensemble data imbalance technique in the last group of experiments. For each group of experiments, support vector machine performed best compared to other machine learning classifiers by producing the highest prediction precision score of 85%. All of the classifiers performed best with thirty ranked features subset, which validates the applied method to recognize the most deterministic risk factors associated with large for gestational age prediction.
机译:一个新生儿,出生体重高于相同孕龄的90百分位数被称为胎龄的大。在胎儿期间患有严重并发症的胎儿,因为它们没有提前鉴定该疾病。早期对孕龄婴儿的大量识别可能会缓慢进展,并防止疾病的进一步并发症。在医学科学,预防和减轻疾病需要检查生化指标。机器学习已经进化并设想为预测具有大多数确定性特征的孕龄婴幼儿的工具。本研究旨在识别大多数确定性生化指标,用于大量的胎龄预测,具有最小的计算开销。据我所知,这是第一次进行研究,以确定与胎龄的大量相关的最多确定的危险因素,并使用机器学习技术为胎龄预测模型进行大量。为了开发一种高效的胎龄预测模型,我们进行了三组实验,认为基本机器学习方法;特征选择;和不平衡数据。支持向量机,Logistic回归,幼稚贝叶斯和随机森林使用大型交叉验证,用于Gestations DataSet。我们选择曲线下的精度和面积作为绩效评估指标;信息GAIN采用基于熵的特征选择方法对等级特征;我们在最后一组实验中介绍了一个集合数据不平衡技术。对于每组实验,通过产生最高预测精度得分为85%,支持向量机器比较与其他机器学习分类器相比最佳。所有分类器都以三十次排名的特征子集执行,验证所应用的方法识别与胎龄预测的大量相关的最多确定的风险因素。

著录项

  • 来源
    《Journal of supercomputing》 |2020年第8期|6219-6237|共19页
  • 作者单位

    Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China|Sukkur IBA Univ Dept Comp Sci Sukkur 65200 Pakistan;

    Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China;

    Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China;

    Chinese Acad Med Sci & Peking Union Med Coll Peking Union Med Coll Hosp Dept Endocrinol Beijing 100730 Peoples R China;

    Chinese Acad Med Sci & Peking Union Med Coll Peking Union Med Coll Hosp Dept Endocrinol Beijing 100730 Peoples R China;

    Tsinghua Univ Tsinghua Natl Lab Informat Sci & Technol Beijing 100084 Peoples R China;

    Tsinghua Univ Tsinghua Natl Lab Informat Sci & Technol Beijing 100084 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Large for gestational age; Feature selection; Machine learning; Risk factors; Prediction model; Data imbalance; Ensemble technique;

    机译:胎龄大;特征选择;机器学习;风险因素;预测模型;数据不平衡;集合技术;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号